Conjugate homogeneous additive map
In mathematics , a function
f
:
V
→
W
:
𝑓
→
𝑉
𝑊
{\displaystyle{\displaystyle f:V\to W}}
between two complex vector spaces is said to be antilinear or conjugate-linear if
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
(additivity)
f
(
s
x
)
=
s
¯
f
(
x
)
(conjugate homogeneity)
𝑓
𝑥
𝑦
absent
𝑓
𝑥
𝑓
𝑦
missing-subexpression
(additivity)
𝑓
𝑠
𝑥
absent
¯
𝑠
𝑓
𝑥
missing-subexpression
(conjugate homogeneity)
{\displaystyle{\begin{aligned} \displaystyle f(x+y)&\displaystyle=f(x)+f(y)&&%
\displaystyle\qquad{\text{ (additivity) }}\\
\displaystyle f(sx)&\displaystyle={\overline{s}}f(x)&&\displaystyle\qquad{%
\text{ (conjugate homogeneity) }}\\
\end{aligned}}}
hold for all vectors
x
,
y
∈
V
𝑥
𝑦
𝑉
{\displaystyle{\displaystyle x,y\in V}}
and every complex number
s
,
𝑠
{\displaystyle{\displaystyle s,}}
where
s
¯
¯
𝑠
{\displaystyle{\displaystyle{\overline{s}}}}
denotes the complex conjugate of
s
.
𝑠
{\displaystyle{\displaystyle s.}}
Antilinear maps stand in contrast to linear maps , which are additive maps that are homogeneous rather than conjugate homogeneous . If the vector spaces are real then antilinearity is the same as linearity.
Antilinear maps occur in quantum mechanics in the study of time reversal and in spinor calculus , where it is customary to replace the bars over the basis vectors and the components of geometric objects by dots put above the indices. Scalar-valued antilinear maps often arise when dealing with complex inner products and Hilbert spaces .
Definitions and characterizations
A function is called antilinear or conjugate linear if it is additive and conjugate homogeneous . An antilinear functional on a vector space
V
𝑉
{\displaystyle{\displaystyle V}}
is a scalar-valued antilinear map.
A function
f
𝑓
{\displaystyle{\displaystyle f}}
is called additive if
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
for all vectors
x
,
y
𝑓
𝑥
𝑦
𝑓
𝑥
𝑓
𝑦
for all vectors
𝑥
𝑦
{\displaystyle f(x+y)=f(x)+f(y)\quad{\text{ for all vectors }}x,y}
while it is called conjugate homogeneous if
f
(
a
x
)
=
a
¯
f
(
x
)
for all vectors
x
and all scalars
a
.
𝑓
𝑎
𝑥
¯
𝑎
𝑓
𝑥
for all vectors
𝑥
and all scalars
𝑎
{\displaystyle f(ax)={\overline{a}}f(x)\quad{\text{ for all vectors }}x{\text{%
and all scalars }}a.}
In contrast, a linear map is a function that is additive and homogeneous , where
f
𝑓
{\displaystyle{\displaystyle f}}
is called homogeneous if
f
(
a
x
)
=
a
f
(
x
)
for all vectors
x
and all scalars
a
.
𝑓
𝑎
𝑥
𝑎
𝑓
𝑥
for all vectors
𝑥
and all scalars
𝑎
{\displaystyle f(ax)=af(x)\quad{\text{ for all vectors }}x{\text{ and all %
scalars }}a.}
An antilinear map
f
:
V
→
W
:
𝑓
→
𝑉
𝑊
{\displaystyle{\displaystyle f:V\to W}}
may be equivalently described in terms of the linear map
f
¯
:
V
→
W
¯
:
¯
𝑓
→
𝑉
¯
𝑊
{\displaystyle{\displaystyle{\overline{f}}:V\to{\overline{W}}}}
from
V
𝑉
{\displaystyle{\displaystyle V}}
to the complex conjugate vector space
W
¯
.
¯
𝑊
{\displaystyle{\displaystyle{\overline{W}}.}}
Examples
Anti-linear dual map
Given a complex vector space
V
𝑉
{\displaystyle{\displaystyle V}}
of rank 1, we can construct an anti-linear dual map which is an anti-linear map
l
:
V
→
ℂ
:
𝑙
→
𝑉
ℂ
{\displaystyle l:V\to\mathbb{C}}
sending an element
x
1
+
i
y
1
subscript
𝑥
1
𝑖
subscript
𝑦
1
{\displaystyle{\displaystyle x_{1}+iy_{1}}}
for
x
1
,
y
1
∈
ℝ
subscript
𝑥
1
subscript
𝑦
1
ℝ
{\displaystyle{\displaystyle x_{1},y_{1}\in\mathbb{R}}}
to
x
1
+
i
y
1
↦
a
1
x
1
-
i
b
1
y
1
maps-to
subscript
𝑥
1
𝑖
subscript
𝑦
1
subscript
𝑎
1
subscript
𝑥
1
𝑖
subscript
𝑏
1
subscript
𝑦
1
{\displaystyle x_{1}+iy_{1}\mapsto a_{1}x_{1}-ib_{1}y_{1}}
for some fixed real numbers
a
1
,
b
1
.
subscript
𝑎
1
subscript
𝑏
1
{\displaystyle{\displaystyle a_{1},b_{1}.}}
We can extend this to any finite dimensional complex vector space, where if we write out the standard basis
e
1
,
…
,
e
n
subscript
𝑒
1
…
subscript
𝑒
𝑛
{\displaystyle{\displaystyle e_{1},\ldots,e_{n}}}
and each standard basis element as
e
k
=
x
k
+
i
y
k
subscript
𝑒
𝑘
subscript
𝑥
𝑘
𝑖
subscript
𝑦
𝑘
{\displaystyle e_{k}=x_{k}+iy_{k}}
then an anti-linear complex map to
ℂ
ℂ
{\displaystyle{\displaystyle\mathbb{C}}}
will be of the form
∑
k
x
k
+
i
y
k
↦
∑
k
a
k
x
k
-
i
b
k
y
k
maps-to
subscript
𝑘
subscript
𝑥
𝑘
𝑖
subscript
𝑦
𝑘
subscript
𝑘
subscript
𝑎
𝑘
subscript
𝑥
𝑘
𝑖
subscript
𝑏
𝑘
subscript
𝑦
𝑘
{\displaystyle\sum_{k}x_{k}+iy_{k}\mapsto\sum_{k}a_{k}x_{k}-ib_{k}y_{k}}
for
a
k
,
b
k
∈
ℝ
.
subscript
𝑎
𝑘
subscript
𝑏
𝑘
ℝ
{\displaystyle{\displaystyle a_{k},b_{k}\in\mathbb{R}.}}
Isomorphism of anti-linear dual with real dual
The anti-linear dual[1] pg 36 of a complex vector space
V
𝑉
{\displaystyle{\displaystyle V}}
Hom
ℂ
¯
(
V
,
ℂ
)
subscript
Hom
¯
ℂ
𝑉
ℂ
{\displaystyle\operatorname{Hom}_{\overline{\mathbb{C}}}(V,\mathbb{C})}
is a special example because it is isomorphic to the real dual of the underlying real vector space of
V
,
𝑉
{\displaystyle{\displaystyle V,}}
Hom
ℝ
(
V
,
ℝ
)
.
subscript
Hom
ℝ
𝑉
ℝ
{\displaystyle{\displaystyle{\text{Hom}}_{\mathbb{R}}(V,\mathbb{R}).}}
This is given by the map sending an anti-linear map
ℓ
:
V
→
ℂ
:
ℓ
→
𝑉
ℂ
{\displaystyle\ell:V\to\mathbb{C}}
to
Im
(
ℓ
)
:
V
→
ℝ
:
Im
ℓ
→
𝑉
ℝ
{\displaystyle\operatorname{Im}(\ell):V\to\mathbb{R}}
In the other direction, there is the inverse map sending a real dual vector
λ
:
V
→
ℝ
:
𝜆
→
𝑉
ℝ
{\displaystyle\lambda:V\to\mathbb{R}}
to
ℓ
(
v
)
=
-
λ
(
i
v
)
+
i
λ
(
v
)
ℓ
𝑣
𝜆
𝑖
𝑣
𝑖
𝜆
𝑣
{\displaystyle\ell(v)=-\lambda(iv)+i\lambda(v)}
giving the desired map.
Properties
The composite of two antilinear maps is a linear map . The class of semilinear maps generalizes the class of antilinear maps by generalizing the field.
Anti-dual space
The vector space of all antilinear forms on a vector space
X
𝑋
{\displaystyle{\displaystyle X}}
is called the algebraic anti-dual space of
X
.
𝑋
{\displaystyle{\displaystyle X.}}
If
X
𝑋
{\displaystyle{\displaystyle X}}
is a topological vector space , then the vector space of all continuous antilinear functionals on
X
,
𝑋
{\displaystyle{\displaystyle X,}}
denoted by
X
¯
′
,
superscript
¯
𝑋
′
{\textstyle{\overline{X}}^{\prime},}
is called the continuous anti-dual space or simply the anti-dual space of
X
𝑋
{\displaystyle{\displaystyle X}}
if no confusion can arise.
When
H
𝐻
{\displaystyle{\displaystyle H}}
is a normed space then the canonical norm on the (continuous) anti-dual space
X
¯
′
,
superscript
¯
𝑋
′
{\textstyle{\overline{X}}^{\prime},}
denoted by
∥
f
∥
X
¯
′
,
subscript
norm
𝑓
superscript
¯
𝑋
′
{\textstyle\|f\|_{{\overline{X}}^{\prime}},}
is defined by using this same equation:
∥
f
∥
X
¯
′
:=
sup
∥
x
∥
≤
1
,
x
∈
X
|
f
(
x
)
|
for every
f
∈
X
¯
′
.
formulae-sequence
assign
subscript
norm
𝑓
superscript
¯
𝑋
′
subscript
supremum
formulae-sequence
norm
𝑥
1
𝑥
𝑋
𝑓
𝑥
for every
𝑓
superscript
¯
𝑋
′
{\displaystyle\|f\|_{{\overline{X}}^{\prime}}~{}:=~{}\sup_{\|x\|\leq 1,x\in X}%
|f(x)|\quad{\text{ for every }}f\in{\overline{X}}^{\prime}.}
This formula is identical to the formula for the dual norm on the continuous dual space
X
′
superscript
𝑋
′
{\displaystyle{\displaystyle X^{\prime}}}
of
X
,
𝑋
{\displaystyle{\displaystyle X,}}
which is defined by
∥
f
∥
X
′
:=
sup
∥
x
∥
≤
1
,
x
∈
X
|
f
(
x
)
|
for every
f
∈
X
′
.
formulae-sequence
assign
subscript
norm
𝑓
superscript
𝑋
′
subscript
supremum
formulae-sequence
norm
𝑥
1
𝑥
𝑋
𝑓
𝑥
for every
𝑓
superscript
𝑋
′
{\displaystyle\|f\|_{X^{\prime}}~{}:=~{}\sup_{\|x\|\leq 1,x\in X}|f(x)|\quad{%
\text{ for every }}f\in X^{\prime}.}
Canonical isometry between the dual and anti-dual
The complex conjugate
f
¯
¯
𝑓
{\displaystyle{\displaystyle{\overline{f}}}}
of a functional
f
𝑓
{\displaystyle{\displaystyle f}}
is defined by sending
x
∈
domain
f
𝑥
domain
𝑓
{\displaystyle{\displaystyle x\in\operatorname{domain}f}}
to
f
(
x
)
¯
.
¯
𝑓
𝑥
{\textstyle{\overline{f(x)}}.}
It satisfies
∥
f
∥
X
′
=
∥
f
¯
∥
X
¯
′
and
∥
g
¯
∥
X
′
=
∥
g
∥
X
¯
′
formulae-sequence
subscript
norm
𝑓
superscript
𝑋
′
subscript
norm
¯
𝑓
superscript
¯
𝑋
′
and
subscript
norm
¯
𝑔
superscript
𝑋
′
subscript
norm
𝑔
superscript
¯
𝑋
′
{\displaystyle\|f\|_{X^{\prime}}~{}=~{}\left\|{\overline{f}}\right\|_{{%
\overline{X}}^{\prime}}\quad{\text{ and }}\quad\left\|{\overline{g}}\right\|_{%
X^{\prime}}~{}=~{}\|g\|_{{\overline{X}}^{\prime}}}
for every
f
∈
X
′
𝑓
superscript
𝑋
′
{\displaystyle{\displaystyle f\in X^{\prime}}}
and every
g
∈
X
¯
′
.
𝑔
superscript
¯
𝑋
′
{\textstyle g\in{\overline{X}}^{\prime}.}
This says exactly that the canonical antilinear bijection defined by
Cong
:
X
′
→
X
¯
′
where
Cong
(
f
)
:=
f
¯
:
Cong
formulae-sequence
→
superscript
𝑋
′
superscript
¯
𝑋
′
where
assign
Cong
𝑓
¯
𝑓
{\displaystyle\operatorname{Cong}~{}:~{}X^{\prime}\to{\overline{X}}^{\prime}%
\quad{\text{ where }}\quad\operatorname{Cong}(f):={\overline{f}}}
as well as its inverse
Cong
-
1
:
X
¯
′
→
X
′
:
superscript
Cong
1
→
superscript
¯
𝑋
′
superscript
𝑋
′
{\displaystyle{\displaystyle\operatorname{Cong}^{-1}~{}:~{}{\overline{X}}^{%
\prime}\to X^{\prime}}}
are antilinear isometries and consequently also homeomorphisms .
If
𝔽
=
ℝ
𝔽
ℝ
{\displaystyle{\displaystyle\mathbb{F}=\mathbb{R}}}
then
X
′
=
X
¯
′
superscript
𝑋
′
superscript
¯
𝑋
′
{\displaystyle{\displaystyle X^{\prime}={\overline{X}}^{\prime}}}
and this canonical map
Cong
:
X
′
→
X
¯
′
:
Cong
→
superscript
𝑋
′
superscript
¯
𝑋
′
{\displaystyle{\displaystyle\operatorname{Cong}:X^{\prime}\to{\overline{X}}^{%
\prime}}}
reduces down to the identity map .
Inner product spaces
If
X
𝑋
{\displaystyle{\displaystyle X}}
is an inner product space then both the canonical norm on
X
′
superscript
𝑋
′
{\displaystyle{\displaystyle X^{\prime}}}
and on
X
¯
′
superscript
¯
𝑋
′
{\displaystyle{\displaystyle{\overline{X}}^{\prime}}}
satisfies the parallelogram law , which means that the polarization identity can be used to define a canonical inner product on
X
′
superscript
𝑋
′
{\displaystyle{\displaystyle X^{\prime}}}
and also on
X
¯
′
,
superscript
¯
𝑋
′
{\displaystyle{\displaystyle{\overline{X}}^{\prime},}}
which this article will denote by the notations
⟨
f
,
g
⟩
X
′
:=
⟨
g
∣
f
⟩
X
′
and
⟨
f
,
g
⟩
X
¯
′
:=
⟨
g
∣
f
⟩
X
¯
′
formulae-sequence
assign
subscript
𝑓
𝑔
superscript
𝑋
′
subscript
inner-product
𝑔
𝑓
superscript
𝑋
′
and
assign
subscript
𝑓
𝑔
superscript
¯
𝑋
′
subscript
inner-product
𝑔
𝑓
superscript
¯
𝑋
′
{\displaystyle\langle f,g\rangle_{X^{\prime}}:=\langle g\mid f\rangle_{X^{%
\prime}}\quad{\text{ and }}\quad\langle f,g\rangle_{{\overline{X}}^{\prime}}:=%
\langle g\mid f\rangle_{{\overline{X}}^{\prime}}}
where this inner product makes
X
′
superscript
𝑋
′
{\displaystyle{\displaystyle X^{\prime}}}
and
X
¯
′
superscript
¯
𝑋
′
{\displaystyle{\displaystyle{\overline{X}}^{\prime}}}
into Hilbert spaces.
The inner products
⟨
f
,
g
⟩
X
′
subscript
𝑓
𝑔
superscript
𝑋
′
{\textstyle\langle f,g\rangle_{X^{\prime}}}
and
⟨
f
,
g
⟩
X
¯
′
subscript
𝑓
𝑔
superscript
¯
𝑋
′
{\textstyle\langle f,g\rangle_{{\overline{X}}^{\prime}}}
are antilinear in their second arguments. Moreover, the canonical norm induced by this inner product (that is, the norm defined by
f
↦
⟨
f
,
f
⟩
X
′
maps-to
𝑓
subscript
𝑓
𝑓
superscript
𝑋
′
{\textstyle f\mapsto{\sqrt{\left\langle f,f\right\rangle_{X^{\prime}}}}}
) is consistent with the dual norm (that is, as defined above by the supremum over the unit ball); explicitly, this means that the following holds for every
f
∈
X
′
:
:
𝑓
superscript
𝑋
′
absent
{\displaystyle{\displaystyle f\in X^{\prime}:}}
sup
∥
x
∥
≤
1
,
x
∈
X
|
f
(
x
)
|
=
∥
f
∥
X
′
=
⟨
f
,
f
⟩
X
′
=
⟨
f
∣
f
⟩
X
′
.
subscript
supremum
formulae-sequence
norm
𝑥
1
𝑥
𝑋
𝑓
𝑥
subscript
norm
𝑓
superscript
𝑋
′
subscript
𝑓
𝑓
superscript
𝑋
′
subscript
inner-product
𝑓
𝑓
superscript
𝑋
′
{\displaystyle\sup_{\|x\|\leq 1,x\in X}|f(x)|=\|f\|_{X^{\prime}}~{}=~{}{\sqrt{%
\langle f,f\rangle_{X^{\prime}}}}~{}=~{}{\sqrt{\langle f\mid f\rangle_{X^{%
\prime}}}}.}
If
X
𝑋
{\displaystyle{\displaystyle X}}
is an inner product space then the inner products on the dual space
X
′
superscript
𝑋
′
{\displaystyle{\displaystyle X^{\prime}}}
and the anti-dual space
X
¯
′
,
superscript
¯
𝑋
′
{\textstyle{\overline{X}}^{\prime},}
denoted respectively by
⟨
⋅
,
⋅
⟩
X
′
subscript
⋅
⋅
superscript
𝑋
′
{\textstyle\langle\,\cdot\,,\,\cdot\,\rangle_{X^{\prime}}}
and
⟨
⋅
,
⋅
⟩
X
¯
′
,
subscript
⋅
⋅
superscript
¯
𝑋
′
{\textstyle\langle\,\cdot\,,\,\cdot\,\rangle_{{\overline{X}}^{\prime}},}
are related by
⟨
f
¯
|
g
¯
⟩
X
¯
′
=
⟨
f
|
g
⟩
X
′
¯
=
⟨
g
|
f
⟩
X
′
for all
f
,
g
∈
X
′
formulae-sequence
subscript
inner-product
¯
𝑓
¯
𝑔
superscript
¯
𝑋
′
¯
subscript
inner-product
𝑓
𝑔
superscript
𝑋
′
subscript
inner-product
𝑔
𝑓
superscript
𝑋
′
for all
𝑓
𝑔
superscript
𝑋
′
{\displaystyle\langle\,{\overline{f}}\,|\,{\overline{g}}\,\rangle_{{\overline{%
X}}^{\prime}}={\overline{\langle\,f\,|\,g\,\rangle_{X^{\prime}}}}=\langle\,g\,%
|\,f\,\rangle_{X^{\prime}}\qquad{\text{ for all }}f,g\in X^{\prime}}
and
⟨
f
¯
|
g
¯
⟩
X
′
=
⟨
f
|
g
⟩
X
¯
′
¯
=
⟨
g
|
f
⟩
X
¯
′
for all
f
,
g
∈
X
¯
′
.
formulae-sequence
subscript
inner-product
¯
𝑓
¯
𝑔
superscript
𝑋
′
¯
subscript
inner-product
𝑓
𝑔
superscript
¯
𝑋
′
subscript
inner-product
𝑔
𝑓
superscript
¯
𝑋
′
for all
𝑓
𝑔
superscript
¯
𝑋
′
{\displaystyle\langle\,{\overline{f}}\,|\,{\overline{g}}\,\rangle_{X^{\prime}}%
={\overline{\langle\,f\,|\,g\,\rangle_{{\overline{X}}^{\prime}}}}=\langle\,g\,%
|\,f\,\rangle_{{\overline{X}}^{\prime}}\qquad{\text{ for all }}f,g\in{%
\overline{X}}^{\prime}.}
انظر أيضاً
الهامش
^ Birkenhake, Christina (2004). Complex Abelian Varieties . Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1 . OCLC 851380558 .
References