طائرة شراعية

(تم التحويل من Glider)
Single-seat high performance fiberglass Glaser-Dirks DG-808 glider
Aerobatic glider with tip smoke, pictured on July 2, 2005, in Lappeenranta, Finland

الطائرة الشراعية هي الة طائرة بدون محرك. و يسمى النشاط المرتبط بها "طيران شراعي"

تتمثل في جناحين منبسطين مرتفعين عن جسم الطائرة في شكل زاوية. قيادتها تتم بتحريك الجنيحات الخلفية و الجنيحات الاضافية الامامية. ويمكن وضع الطائرات الشراعية في وضعية التحليق بثلاث طرق مختلفة. الاطثر رواجا تتمثل في قطرها من قبل طائرة اخرى تسمى طائرة قاطرة, الطريقة الاخرى الاقل استعمالا هي استعمال رافعة و في بعض الاحيان بقدراتها الخاصة و منها استعمال محرك صغير.

طائرة شراعية في تحليق دائري

انواع الطائرات الشراعية

يمكن تصنيف الطائرات الشراعية إلى الأصناف التالية

  • المصنوعة من الخشب و الاقمشة (قديمة).
  • المصنوعة من الخشب و اعمدة الحديد.
  • المصنوعة كاملة من المعدن (نادرة).
  • المصنوعة من الياف البلور و الريزين (حديثة).
  • الطائرات الشراعية بمحرك صغير يفصل بعد الاقلاع.
  • الطائرات الشراعية بمحرك مركب و تستعمل لاغراض تدريبية و علمية.

التاريخ

Early pre-modern accounts of flight are in most cases difficult to verify and it is unclear whether each craft was a glider, kite or parachute and to what degree they were truly controllable. Often the event is only recorded a long time after it allegedly took place. A 17th-century account reports an attempt at flight by the 9th-century poet Abbas Ibn Firnas near Córdoba, Spain which ended in heavy back injuries.[1] The monk Eilmer of Malmesbury is reported by William of Malmesbury (1080ح. 1080), a fellow monk and historian, to have flown off the roof of his Abbey in Malmesbury, England, sometime between 1000 and 1010 AD, gliding about 200 متر (220 yd) before crashing and breaking his legs.[2] According to these reports, both used a set of (feathery) wings, and both blamed their crash on the lack of a tail.[3] Hezârfen Ahmed Çelebi is alleged to have flown a glider with eagle-like wings over the Bosphorus strait from the Galata Tower to Üsküdar district in Istanbul around 1630–1632.[4][5][6]

19th century

Otto Lilienthal in flight

The first heavier-than-air (i.e. non-balloon) man-carrying aircraft that were based on published scientific principles were Sir George Cayley's series of gliders which achieved brief wing-borne hops from around 1849. Thereafter gliders were built by pioneers such as Jean Marie Le Bris, John J. Montgomery, Otto Lilienthal, Percy Pilcher, Octave Chanute and Augustus Moore Herring to develop aviation. Lilienthal was the first to make repeated successful flights (eventually totaling over 2,000) and was the first to use rising air to prolong his flight. Using a Montgomery tandem-wing glider, Daniel Maloney was the first to demonstrate high-altitude controlled flight using a balloon-launched glider launched from 4,000 feet in 1905.[7]

The Wright Brothers developed a series of three manned gliders after preliminary tests with a kite as they worked towards achieving powered flight. They returned to glider testing in 1911 by removing the motor from one of their later designs.

Development

In the inter-war years, recreational gliding flourished in Germany under the auspices of Rhön-Rossitten. In the United States, the Schweizer brothers of Elmira, New York, manufactured sport sailplanes to meet the new demand. Sailplanes continued to evolve in the 1930s, and sport gliding has become the main application of gliders. As their performance improved, gliders began to be used to fly cross-country and now regularly fly hundreds or even over a thousand of kilometers in a day,[8] if the weather is suitable.

Military gliders were developed by during World War II by a number of countries for landing troops. A glider – the Colditz Cock – was even built secretly by POWs as a potential escape method at Oflag IV-C near the end of the war in 1944.

Smallest glider in the world – BrO-18 "Boružė" (Ladybird), constructed in Lithuania in 1975

Development of flexible-wing hang gliders

Foot-launched aircraft had been flown by Lilienthal and at the meetings at Wasserkuppe in the 1920s. However the innovation that led to modern hang gliders was in 1951 when Francis Rogallo and Gertrude Rogallo applied for a patent for a fully flexible wing with a stiffening structure. The American space agency NASA began testing in various flexible and semi-rigid configurations of this Rogallo wing in 1957 in order to use it as a recovery system for the Gemini space capsules. Charles Richards and Paul Bikle developed the concept producing a wing that was simple to build which was capable of slow flight and as gentle landing. Between 1960 and 1962 Barry Hill Palmer used this concept to make foot-launched hang gliders, followed in 1963 by Mike Burns who built a kite-hang glider called Skiplane. In 1963, John W. Dickenson began commercial production.[9]

Development of paragliders

January 10, 1963 American Domina Jalbert filed a patent US Patent 3131894 on the Parafoil which had sectioned cells in an aerofoil shape; an open leading edge and a closed trailing edge, inflated by passage through the air – the ram-air design.[10] The 'Sail Wing' was developed further for recovery of NASA space capsules by David Barish. Testing was done by using ridge lift.[11] After tests on Hunter Mountain, New York in September 1965, he went on to promote "slope soaring" as a summer activity for ski resorts (apparently without great success).[12] NASA originated the term "paraglider" in the early 1960s, and ‘paragliding’ was first used in the early 1970s to describe foot-launching of gliding parachutes. Although their use is mainly recreational, unmanned paragliders have also been built for military applications e.g. Atair Insect.

Recreational types

(video) A glider sails over Gunma, Japan.

The main application today of glider aircraft is sport and recreation.

Sailplane

Gliders were developed from the 1920s for recreational purposes. As pilots began to understand how to use rising air, gliders were developed with a high lift-to-drag ratio. These allowed longer glides to the next source of 'lift', and so increase their chances of flying long distances. This gave rise to the popular sport known as gliding although the term can also be used to refer to merely descending flight. Such gliders designed for soaring are sometimes called sailplanes.

Gliders were mainly built of wood and metal but the majority now have composite materials using glass, carbon fibre and aramid fibers. To minimise drag, these types have a fuselage and long narrow wings, i.e. a high aspect ratio. In the beginning, there were huge differences in the appearance of early-sailplanes. As technology and materials developed, the aspiration for the perfect balance between lift/drag, climbing ratio and gliding speed, made engineers from various producers create similar designs across the world. Both single-seat and two-seat gliders are available.

Initially training was done by short 'hops' in primary gliders which are very basic aircraft with no cockpit and minimal instruments.[13] Since shortly after World War II training has always been done in two-seat dual control gliders, but high performance two-seaters are also used to share the workload and the enjoyment of long flights. Originally skids were used for landing, but the majority now land on wheels, often retractable. Some gliders, known as motor gliders, are designed for unpowered flight, but can deploy piston, rotary, jet or electric engines.[14] Gliders are classified by the FAI for competitions into glider competition classes mainly on the basis of span and flaps.

Ultralight "airchair" Sandlin Goat 1 glider

A class of ultralight sailplanes, including some known as microlift gliders and some as 'airchairs', has been defined by the FAI based on a maximum weight. They are light enough to be transported easily, and can be flown without licensing in some countries. Ultralight gliders have performance similar to hang gliders, but offer some additional crash safety as the pilot can be strapped in an upright seat within a deformable structure. Landing is usually on one or two wheels which distinguishes these craft from hang gliders. Several commercial ultralight gliders have come and gone, but most current development is done by individual designers and home builders.

Hang gliders

Modern 'flexible wing' hang glider.

Unlike a sailplane, a hang glider is capable of being carried, foot launched and landed solely by the use of the pilot's legs.[15]

  • In the original and still most common designs, Class 1, the pilot is suspended from the center of the flexible wing and controls the aircraft by shifting their weight.
  • Class 2 (designated by the FAI as Sub-Class O-2) have a rigid primary structure with movable aerodynamic surfaces, such as spoilers, as the primary method of control. The pilot is often enclosed by means of a fairing. These offer the best performance and are the most expensive.
  • Class 4 hang gliders are unable to demonstrate consistent ability to safely take-off and/or land in nil-wind conditions, but otherwise are capable of being launched and landed by the use of the pilot's legs.
  • Class 5 hang gliders have a rigid primary structure with movable aerodynamic surfaces as the primary method of control and can safely take-off and land in nil-wind conditions. No pilot fairings are permitted.

In a hang glider the shape of the wing is determined by a structure, and it is this that distinguishes them from the other main type of foot-launched aircraft, paragliders, technically Class 3. Some hang gliders have engines, and are known as powered hang gliders. Due to their commonality of parts, construction and design, they are usually considered by aviation authorities to be hang gliders, even though they may use the engine for the entire flight. Some flexible wing powered aircraft, Ultralight trikes, have a wheeled undercarriage, and so are not hang gliders.

Paragliders

ملف:Paraglidertakeoff.jpg
A paraglider taking off in Brazil

A paraglider is a free-flying, foot-launched aircraft. The pilot sits in a harness suspended below a fabric wing. Unlike a hang glider whose wings have frames, the form of a paraglider wing is formed by the pressure of air entering vents or cells in the front of the wing. This is known as a ram-air wing (similar to the smaller parachute design). The paraglider's light and simple design allows them to be packed and carried in large backpacks, and make them one of the simplest and economical modes of flight. Competition level wings can achieve glide ratios up to 1:10 and fly around speeds of 45 km/h (28 mph).

Like sailplanes and hang gliders, paragliders use rising air (thermals or ridge lift) to gain height. This process is the basis for most recreational flights and competitions, though aerobatics and 'spot landing competitions' also occur. Launching is often done by jogging down a slope, but winch launches behind a towing vehicle are also used. A Paramotor is a paraglider wing powered by a motor attached to the back of the pilot, and is also known as a powered paraglider. A variation of this is the paraplane, which has a motor mounted on a wheeled frame rather than the pilot's back.

Comparison of gliders, hang gliders and paragliders

There can be confusion between gliders, hang gliders, and paragliders. Paragliders and hang gliders are both foot-launched glider aircraft and in both cases the pilot is suspended ("hangs") below the lift surface. "Hang glider" is the term for those where the airframe contains rigid structures, whereas the primary structure of paragliders is supple, consisting mainly of woven material.

الطائرات مظلية الطائرات الشراعية المعلقة الطائرات الشراعية
الهيكل السفلي يستخدم الطيار قدميه للإقلاع والهبوط يستخدم الطيار قدميه للإقلاع والهبوط تقلع الطائرة وتهبط باستخدام عجلات
هيكل الجناح مرنة تمامًا، مع الحفاظ على شكلها فقط من خلال ضغط الهواء المتدفق داخل الجناح وفوقه أثناء الطيران وشد الخطوط مرنة بشكل عام ولكنها مدعومة بإطار صلب يحدد شكلها (لاحظ أن الطائرات الشراعية المعلقة ذات الأجنحة الصلبة موجودة أيضًا) سطح جناح صلب يغطي هيكل الجناح بالكامل
موضع الطيار جالبساً على سرج عادة ما يكون مستلقيًا في حزام يشبه الشرنقة معلق من الجناح؛ من الممكن أيضًا أن يكون في وضع الجلوس والاستلقاء جالساً على مقعد مزود بحزام أمان، ومحاطًا بهيكل مقاوم للاصطدام
مدى السرعة
(سرعة الانهيار- السرعة القصوى)
الأبطأ - عادةً من 25 إلى 60 كم/ساعة للطائرات الشراعية الترفيهية (أكثر من 50 كم/ساعة يتطلب استخدام شريط السرعة)،[16] ومن ثم يكون من الأسهل الانطلاق والطيران في ظل الرياح الخفيفة؛ أقل اختراق للرياح. يمكن تحقيق تباين pitch باستخدام عناصر التحكم أسرع من الطائرات المظلية، وأبطأ من الطائرات الشراعية السرعة القصوى تصل إلى حوالي 280 كم/ساعة؛[17] عادة ما تبلغ سرعة الانهيار 65 كم/ساعة؛[17] مما يكسبها القدرة على الطيران في ظروف مضطربة أكثر رياحًا ويمكن أن تتفوق على الأحوال الجوية السيئة؛ اختراق جيد في الريح المعاكسة
معدل الانزلاق الأقصى حوالي 10، أداء الانزلاق الضعيف نسبيًا يجعل الرحلات الجوية لمسافات طويلة أكثر صعوبة؛ الرقم القياسي العالمي الحالي (اعتبارا من مايو 2017) هو 564 كم/ساعة[18] حوالي 17، مع ما يصل إلى 20 للأجنحة الصلبة الطائرات الشراعية ذات الدرجة المفتوحة - عادةً حوالي 60:1، ولكن في الطائرات الأكثر شيوعًا التي يبلغ طولها 15-18 مترًا، تتراوح نسب الانزلاق بين 38:1 و52:1؛[19] أداء انزلاقي عالي يتيح الطيران لمسافات طويلة، حيث يصل الرقم القياسي الحالي إلى 3000 كم/ساعة (اعتبارا من نوفمبر 2010) record[20]
نصف قطر الدوران نصف قطر الدوران ضيق [بحاجة لمصدر] نصف قطر الدوران كبير إلى حد ما مقارنة بالطائرات المظلية، وأشد إحكامًا من الطائرات الشراعية/الطائرات الشراعية[بحاجة لمصدر] أوسع نصف قطر دوران لكن لا تزال قادرة على الدوران بإحكام في درجات الحرارة[21]
الهبوط أصغر مساحة مطلوبة للهبوط، مما يوفر المزيد من خيارات الهبوط من التحليق عبر البلاد؛ ومن الأسهل أيضًا حزمها وحملها مثل الحقيبة إلى أقرب طريق مطلوب مساحة مسطحة بطول 15 مترًا إلى 60 مترًا؛ يمكن أن يقوم شخص واحد بتفكيكها وحملها إلى أقرب طريق يمكن إجراء عمليات الهبوط في مجال يبلغ طوله حوالي 250 مترًا. قد يكون الاسترداد الجوي ممكنًا، ولكن إذا لم يكن الأمر كذلك، يلزم وجود مقطورة متخصصة للاسترداد عن طريق البر. تحتوي بعض الطائرات الشراعية على محركات تلغي الحاجة إلى الهبوط الخارجي، إذا بدأت بنجاح في الوقت المحدد
التعلم أبسط وأسرع في التعلم يتم التعليم في طائرات شراعية معلقة ذات مقعد ومقعدين يتم التعليم في طائرة شراعية ذات مقعدين مع أدوات تحكم مزدوجة
الراحة عبوات أصغر (أسهل في النقل والتخزين) أكثر صعوبة في النقل والتخزين؛ أطول للتلاعب والتفكيك؛ غالبًا ما يتم نقلها على سطح السيارة غالبًا ما يتم تخزينها ونقلها في مقطورات مصممة خصيصًا يبلغ طولها حوالي 9 أمتار، ويتم تجهيزها منها. على الرغم من أن أدوات المساعدة في التجهيز تسمح لشخص واحد بتجهيز طائرة شراعية، إلا أن التجهيز عادةً ما يشمل شخصين أو ثلاثة أشخاص. تُخزن بعض الطائرات الشراعية المستخدمة بشكل متكرر في حظائر الطائرات.
التكلفة تكلفة الطائرة الجديدة 1500 يورو أو أرخص[22] لكنها تحلق مدة أقصر (حوالي 500 ساعة طيران، اعتمادًا على الاستخدام)، سوق نشط للسلع المستعملة[23] تكلفة الطائرة الشراعية الجديدة عالية جدًا (أعلى مجموعة 18 مترًا توربو مع الأدوات والمقطورة 200.000 يورو) ولكنها تعيش لفترة طويلة (تصل إلى عدة عقود)، لذا فإن سوق السلع المستعملة نشط جدًا؛ التكلفة النموذجية تتراوح من 2000 يورو إلى 145.000 يورو[24]

Military gliders

Waco CG-4A of the USAF

Military gliders were used mainly during the Second World War for carrying troops and heavy equipment (see Glider infantry) to a combat zone, including the British Airspeed Horsa, Russian Polikarpov BDP S-1, American Waco CG-3, Japanese Kokusai Ku-8, and German Junkers Ju 322. These aircraft were towed into the air and most of the way to their target by military transport planes, e.g. C-47 Dakota, or by bombers that had been relegated to secondary activities, e.g. Short Stirling. Once released from the tow near the target, they landed as close to the target as possible. Advantages over paratroopers were that heavy equipment could be landed and that the troops were quickly assembled rather than being dispersed over a drop zone. The gliders were treated as disposable leading to construction from common and inexpensive materials such as wood, though a few were retrieved and re-used. By the time of the Korean War, transport aircraft had also become larger and more efficient so that even light tanks could be dropped by parachute, causing gliders to fall out of favor.

Research aircraft

Horten Ho IV flying wing sailplane prone seating glider

Even after the development of powered aircraft, gliders have been built for research, where the lack of powerplant reduces complexity and construction costs and speeds development, particularly where new and poorly understood aerodynamic ideas are being tested that might require significant airframe changes. Examples have included delta wings, flying wings, lifting bodies and other unconventional lifting surfaces where existing theories were not sufficiently developed to estimate full scale characteristics.

Unpowered flying wings built for aerodynamic research include the Horten flying wings, the scaled glider version of the Armstrong Whitworth A.W.52 jet powered flying wing.

Lifting bodies were also developed using unpowered prototypes. Although the idea can be dated to Vincent Justus Burnelli in 1921, interest was nearly non-existent until it appeared to be a solution for returning spacecraft. Traditional space capsules have little directional control while conventionally winged craft cannot handle the stresses of re-entry, whereas a lifting body combines the benefits of both. The lifting bodies use the fuselage itself to generate lift without employing the usual thin and flat wing so as to minimize the drag and structure of a wing for very high supersonic or hypersonic flight as might be experienced during the re-entry of a spacecraft. Examples of type are the Northrop HL-10 and Martin-Marietta X-24.

The NASA Paresev Rogallo flexible wing glider was built to investigate alternative methods of recovering spacecraft. Although this application was abandoned, publicity inspired hobbyists to adapt the flexible wing airfoil for modern hang gliders.

Rocket gliders

Me 163B on display at the National Museum of the USAF

Rocket-powered aircraft consume their fuel quickly and so most must land unpowered unless there is another power source. The first rocket plane was the Lippisch Ente, and later examples include the Messerschmitt Me 163 rocket-powered interceptor.[25] The American series of research aircraft starting with the Bell X-1 in 1946 up to the North American X-15 spent more time flying unpowered than under power. In the 1960s research was also done on unpowered lifting bodies and on the X-20 Dyna-Soar project, but although the X20 was cancelled, this research eventually led to the Space Shuttle.

NASA's Space Shuttle first flew on April 12, 1981. The Shuttle re-entered at Mach 25 at the end of each spaceflight, landing entirely as a glider. The Space Shuttle and its Soviet equivalent, the Buran shuttle, were by far the fastest ever aircraft. Recent examples of rocket glider include the privately funded SpaceShipOne which is intended for sub-orbital flight and the XCOR EZ-Rocket which is being used to test engines.

Rotary wing

Most unpowered rotary-wing aircraft are kites rather than gliders, i.e. they are usually towed behind a car or boat rather than being capable of free flight. These are known as rotor kites. However rotary-winged gliders, 'gyrogliders', were investigated that could descend like an autogyro, using the lift from rotors to reduce the vertical speed. These were evaluated as a method of dropping people or equipment from other aircraft.

Unmanned gliders

Paper airplane

A paper plane, paper aeroplane (UK), paper airplane (US), paper glider, paper dart or dart is a toy aircraft (usually a glider) made out of paper or paperboard; the practice of constructing paper planes is sometimes referred to as aerogami (Japanese: kamihikōki), after origami, the Japanese art of paper folding.[26]

Model gliders

Model glider aircraft are flying or non-flying models of existing or imaginary gliders, often scaled-down versions of full size planes, using lightweight materials such as polystyrene, balsa wood, foam and fibreglass. Designs range from simple glider aircraft, to accurate scale models, some of which can be very large.

Larger outdoor models are usually radio-controlled gliders that are piloted remotely from the ground with a transmitter. These can remain airborne for extended periods by using the lift produced by slopes and thermals. These can be winched into wind by a line attached to a hook under the fuselage with a ring, so that the line will drop when the model is overhead. Other methods of launching include towing aloft using a model powered aircraft, catapult-launching using an elastic bungee cord and hand-launching. When hand-launching the newer "discus" style of wing-tip hand-launching has largely supplanted the earlier "javelin" type of launch.

Glide bombs

A glide bomb is a bomb with aerodynamic surfaces to allow a gliding flightpath rather than a ballistic one. This allows the bomber aircraft to stand off from the target and launch the bomb from a safe distance. Most types have a remote control system which enables the aircraft to direct the bomb accurately to the target. Glide bombs were developed in Germany from as early as 1915. In World War II they were most successful as anti-shipping weapons. Some air forces today are equipped with gliding devices that can remotely attack airbases with a cluster bomb warhead.

انظر أيضاً

المراجع

  1. ^ Lynn Townsend White Jr. (Spring, 1961) "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition", Technology and Culture 2 (2), pp. 97–111 [100–101].
  2. ^ White, L. Jr., Eilmer of Malmesbury, an Eleventh Century Aviator. Medieval Religion and Technology. Los Angeles: University of California Press, 1978, Chapter 4.
  3. ^ Lynn Townsend White Jr. (Spring, 1961). "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition", Technology and Culture 2 (2), pp. 97–111 [98 & 101].
  4. ^ Who is Hezarfen Ahmet Çelebi? Archived 2016-01-21 at the Wayback Machine
  5. ^ Hezârfen Ahmed Çelebi "The First Man to Fly" Archived 2016-01-21 at the Wayback Machine
  6. ^ Çelebi, Evliya (2003). Seyahatname. Istanbul: Yapı Kredi Kültür Sanat Yayıncılık, p. 318.
  7. ^ Harwood, Craig S. and Fogel, Gary B. Quest for Flight: John J. Montgomery and the Dawn of Aviation in the West, University of Oklahoma Press 2012.
  8. ^ "FAI list of people with 1000km diplomas". 5 October 2017. Archived from the original on 8 May 2019. Retrieved 24 May 2019.
  9. ^ The Fédération Aéronautique Internationale Hang Gliding Diploma (2006) for the invention of the modern hang glider: FAI Award: The FAI Hang Gliding Diploma Archived 2011-05-18 at the Wayback Machine
  10. ^ "History of Paragliding". Archived from the original on 2009-09-13. Retrieved 2009-02-15.{{cite web}}: CS1 maint: unfit URL (link)
  11. ^ "Pilot Profile: David Barish, the Probable Inventor of the Paraglider". Archived from the original on 2010-06-08. Retrieved 2009-03-10.
  12. ^ David Barish, The Forgotten Father of Paragliding Archived 2010-10-29 at the Wayback Machine
  13. ^ Schweizer, Paul A: Wings Like Eagles, The Story of Soaring in the United States, pages 14–22. Smithsonian Institution Press, 1988. ISBN 0-87474-828-3
  14. ^ "Definition of gliders used for sporting purposes in FAI Sporting Code". Archived from the original on 2014-01-06. Retrieved 2013-01-01.
  15. ^ "FAI Sporting Code Section 7" (PDF). Archived from the original (PDF) on 2009-03-19. Retrieved 2009-03-13.
  16. ^ "Technical data for Advance Omega 8". Advance AG. Archived from the original on 2013-05-30. Retrieved 2011-10-22.
  17. ^ أ ب Flight Manual of Scheicher ASW27b. Alexander Schleicher GmbH & Co. 2003.
  18. ^ "FAI Paragliding record". Fédération Aéronautique Internationale. Archived from the original on 2011-05-09. Retrieved 2010-11-30.
  19. ^ "Handicap list 2008" (PDF). Deutsche Meisterschaft im Streckensegelflug. Deutscher Aero Club. Archived from the original (PDF) on 2009-02-24. Retrieved 2008-08-07.
  20. ^ "FAI records". Fédération Aéronautique Internationale. Archived from the original on 2011-09-11. Retrieved 2010-11-30.
  21. ^ Stewart, Ken (1994). The Glider Pilot's Manual. Airlife Publishing Ltd. p. 257. ISBN 1-85310-504-X.
  22. ^ "Brochures Ozone". Ozone France. Archived from the original on 2013-10-27. Retrieved 2011-10-21.
  23. ^ "Typical set of classified ads for paragliders". Archived from the original on 2012-03-30. Retrieved 2011-10-22.
  24. ^ "Typical set of classified ads for gliders". Archived from the original on 2010-12-06. Retrieved 2011-01-18.
  25. ^ The Me 163 was powered by an unstable fuel mix and landing with fuel left caused several accidents
  26. ^ "Aerogami – Event Description". Pragyan. Archived from the original on 21 March 2019. Retrieved 21 March 2019.
الكلمات الدالة: