All points for which two tangents of a curve intersect at 90° angles
لمعلومات عن the branch of medicine، انظر
Orthoptics .
In the geometry of curves , an orthoptic is the set of points for which two tangents of a given curve meet at a right angle.
Orthoptic of the hyperbola (its director circle)
أمثلة:
The orthoptic of a parabola is its directrix (proof: see below ),
The orthoptic of an ellipse
x
2
a
2
+
y
2
b
2
=
1
superscript
𝑥
2
superscript
𝑎
2
superscript
𝑦
2
superscript
𝑏
2
1
{\displaystyle{\displaystyle{\tfrac{x^{2}}{a^{2}}}+{\tfrac{y^{2}}{b^{2}}}=1}}
is the director circle
x
2
+
y
2
=
a
2
+
b
2
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle{\displaystyle x^{2}+y^{2}=a^{2}+b^{2}}}
(see below ),
The orthoptic of a hyperbola
x
2
a
2
-
y
2
b
2
=
1
,
a
>
b
formulae-sequence
superscript
𝑥
2
superscript
𝑎
2
superscript
𝑦
2
superscript
𝑏
2
1
𝑎
𝑏
{\displaystyle{\displaystyle{\tfrac{x^{2}}{a^{2}}}-{\tfrac{y^{2}}{b^{2}}}=1,\ %
a>b}}
is the director circle
x
2
+
y
2
=
a
2
-
b
2
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle{\displaystyle x^{2}+y^{2}=a^{2}-b^{2}}}
(in case of a ≤ b there are no orthogonal tangents, see below ),
The orthoptic of an astroid
x
2
/
3
+
y
2
/
3
=
1
superscript
𝑥
2
3
superscript
𝑦
2
3
1
{\displaystyle{\displaystyle x^{2/3}+y^{2/3}=1}}
is a quadrifolium with the polar equation
r
=
1
2
cos
(
2
φ
)
,
0
≤
φ
<
2
π
formulae-sequence
𝑟
1
2
2
𝜑
0
𝜑
2
𝜋
{\displaystyle{\displaystyle r={\tfrac{1}{\sqrt{2}}}\cos(2\varphi),\ 0\leq%
\varphi<2\pi}}
(see below ).
تعميمات:
An isoptic is the set of points for which two tangents of a given curve meet at a fixed angle (see below ).
An isoptic of two plane curves is the set of points for which two tangents meet at a fixed angle .
Thales' theorem on a chord PQ can be considered as the orthoptic of two circles which are degenerated to the two points P and Q .
متامد مماسات قطع مكافئ
Any parabola can be transformed by a rigid motion (angles are not changed) into a parabola with equation
y
=
a
x
2
𝑦
𝑎
superscript
𝑥
2
{\displaystyle{\displaystyle y=ax^{2}}}
. The slope at a point of the parabola is
m
=
2
a
x
𝑚
2
𝑎
𝑥
{\displaystyle{\displaystyle m=2ax}}
. Replacing x gives the parametric representation of the parabola with the tangent slope as parameter:
(
m
2
a
,
m
2
4
a
)
.
𝑚
2
𝑎
superscript
𝑚
2
4
𝑎
{\displaystyle{\displaystyle\left({\tfrac{m}{2a}},{\tfrac{m^{2}}{4a}}\right)\!%
.}}
The tangent has the equation
y
=
m
x
+
n
𝑦
𝑚
𝑥
𝑛
{\displaystyle{\displaystyle y=mx+n}}
with the still unknown n , which can be determined by inserting the coordinates of the parabola point. One gets
y
=
m
x
-
m
2
4
a
.
𝑦
𝑚
𝑥
superscript
𝑚
2
4
𝑎
{\displaystyle{\displaystyle y=mx-{\tfrac{m^{2}}{4a}}\;.}}
If a tangent contains the point (x 0 , y 0 ) , off the parabola, then the equation
y
0
=
m
x
0
-
m
2
4
a
→
m
2
-
4
a
x
0
m
+
4
a
y
0
=
0
formulae-sequence
subscript
𝑦
0
𝑚
subscript
𝑥
0
superscript
𝑚
2
4
𝑎
→
superscript
𝑚
2
4
𝑎
subscript
𝑥
0
𝑚
4
𝑎
subscript
𝑦
0
0
{\displaystyle y_{0}=mx_{0}-{\frac{m^{2}}{4a}}\quad\rightarrow\quad m^{2}-4ax_%
{0}\,m+4ay_{0}=0}
holds, which has two solutions m 1 and m 2 corresponding to the two tangents passing (x 0 , y 0 ) . The free term of a reduced quadratic equation is always the product of its solutions. Hence, if the tangents meet at (x 0 , y 0 ) orthogonally, the following equations hold:
m
1
m
2
=
-
1
=
4
a
y
0
subscript
𝑚
1
subscript
𝑚
2
1
4
𝑎
subscript
𝑦
0
{\displaystyle m_{1}m_{2}=-1=4ay_{0}}
The last equation is equivalent to
y
0
=
-
1
4
a
,
subscript
𝑦
0
1
4
𝑎
{\displaystyle y_{0}=-{\frac{1}{4a}}\,,}
which is the equation of the directrix .
متعامد مماسات قطع ناقص وقطع زائد
قطع ناقص
Let
E
:
x
2
a
2
+
y
2
b
2
=
1
:
𝐸
superscript
𝑥
2
superscript
𝑎
2
superscript
𝑦
2
superscript
𝑏
2
1
{\displaystyle{\displaystyle E:\;{\tfrac{x^{2}}{a^{2}}}+{\tfrac{y^{2}}{b^{2}}}%
=1}}
be the ellipse of consideration.
The tangents to the ellipse
E
𝐸
{\displaystyle{\displaystyle E}}
at the vertices and co-vertices intersect at the 4 points
(
±
a
,
±
b
)
plus-or-minus
𝑎
plus-or-minus
𝑏
{\displaystyle{\displaystyle(\pm a,\pm b)}}
, which lie on the desired orthoptic curve (the circle
x
2
+
y
2
=
a
2
+
b
2
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle{\displaystyle x^{2}+y^{2}=a^{2}+b^{2}}}
).
The tangent at a point
(
u
,
v
)
𝑢
𝑣
{\displaystyle{\displaystyle(u,v)}}
of the ellipse
E
𝐸
{\displaystyle{\displaystyle E}}
has the equation
u
a
2
x
+
v
b
2
y
=
1
𝑢
superscript
𝑎
2
𝑥
𝑣
superscript
𝑏
2
𝑦
1
{\displaystyle{\displaystyle{\tfrac{u}{a^{2}}}x+{\tfrac{v}{b^{2}}}y=1}}
(see tangent to an ellipse ). If the point is not a vertex this equation can be solved for y :
y
=
-
b
2
u
a
2
v
x
+
b
2
v
.
𝑦
superscript
𝑏
2
𝑢
superscript
𝑎
2
𝑣
𝑥
superscript
𝑏
2
𝑣
{\displaystyle{\displaystyle y=-{\tfrac{b^{2}u}{a^{2}v}}\;x\;+\;{\tfrac{b^{2}}%
{v}}\,.}}
باستخدام الاختصارات
m
=
-
b
2
u
a
2
v
,
n
=
b
2
v
𝑚
absent
superscript
𝑏
2
𝑢
superscript
𝑎
2
𝑣
𝑛
absent
superscript
𝑏
2
𝑣
{\displaystyle{\begin{aligned} \displaystyle m&\displaystyle=-{\tfrac{b^{2}u}{%
a^{2}v}},\\
\displaystyle\color[rgb]{1,0,0}n&\displaystyle=\color[rgb]{1,0,0}{\tfrac{b^{2}%
}{v}}\end{aligned}}}
( I )
and the equation
u
2
a
2
=
1
-
v
2
b
2
=
1
-
b
2
n
2
superscript
𝑢
2
superscript
𝑎
2
1
superscript
𝑣
2
superscript
𝑏
2
1
superscript
𝑏
2
superscript
𝑛
2
{\displaystyle{\displaystyle{\color[rgb]{0,0,1}{\tfrac{u^{2}}{a^{2}}}=1-{%
\tfrac{v^{2}}{b^{2}}}=1-{\tfrac{b^{2}}{n^{2}}}}}}
one gets:
m
2
=
b
4
u
2
a
4
v
2
=
1
a
2
b
4
v
2
u
2
a
2
=
1
a
2
n
2
(
1
-
b
2
n
2
)
=
n
2
-
b
2
a
2
.
superscript
𝑚
2
superscript
𝑏
4
superscript
𝑢
2
superscript
𝑎
4
superscript
𝑣
2
1
superscript
𝑎
2
superscript
𝑏
4
superscript
𝑣
2
superscript
𝑢
2
superscript
𝑎
2
1
superscript
𝑎
2
superscript
𝑛
2
1
superscript
𝑏
2
superscript
𝑛
2
superscript
𝑛
2
superscript
𝑏
2
superscript
𝑎
2
{\displaystyle m^{2}={\frac{b^{4}u^{2}}{a^{4}v^{2}}}={\frac{1}{a^{2}}}{\color[%
rgb]{1,0,0}{\frac{b^{4}}{v^{2}}}}{\color[rgb]{0,0,1}{\frac{u^{2}}{a^{2}}}}={%
\frac{1}{a^{2}}}{\color[rgb]{1,0,0}n^{2}}{\color[rgb]{0,0,1}\left(1-{\frac{b^{%
2}}{n^{2}}}\right)}={\frac{n^{2}-b^{2}}{a^{2}}}\,.}
Hence
n
=
±
m
2
a
2
+
b
2
𝑛
plus-or-minus
superscript
𝑚
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle n=\pm{\sqrt{m^{2}a^{2}+b^{2}}}}
( II )
and the equation of a non vertical tangent is
y
=
m
x
±
m
2
a
2
+
b
2
.
𝑦
plus-or-minus
𝑚
𝑥
superscript
𝑚
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle y=mx\pm{\sqrt{m^{2}a^{2}+b^{2}}}.}
Solving relations (I) for
u
,
v
𝑢
𝑣
{\displaystyle{\displaystyle u,v}}
and respecting (II) leads to the slope depending parametric representation of the ellipse:
(
u
,
v
)
=
(
-
m
a
2
±
m
2
a
2
+
b
2
,
b
2
±
m
2
a
2
+
b
2
)
.
𝑢
𝑣
𝑚
superscript
𝑎
2
plus-or-minus
superscript
𝑚
2
superscript
𝑎
2
superscript
𝑏
2
superscript
𝑏
2
plus-or-minus
superscript
𝑚
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle(u,v)=\left(-{\tfrac{ma^{2}}{\pm{\sqrt{m^{2}a^{2}+b^{2}}}}}\;,\;%
{\tfrac{b^{2}}{\pm{\sqrt{m^{2}a^{2}+b^{2}}}}}\right)\,.}
(For another proof: see Ellipse#Parametric representation § Notes .)
If a tangent contains the point
(
x
0
,
y
0
)
subscript
𝑥
0
subscript
𝑦
0
{\displaystyle{\displaystyle(x_{0},y_{0})}}
, off the ellipse, then the equation
y
0
=
m
x
0
±
m
2
a
2
+
b
2
subscript
𝑦
0
plus-or-minus
𝑚
subscript
𝑥
0
superscript
𝑚
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle y_{0}=mx_{0}\pm{\sqrt{m^{2}a^{2}+b^{2}}}}
holds. Eliminating the square root leads to
m
2
-
2
x
0
y
0
x
0
2
-
a
2
m
+
y
0
2
-
b
2
x
0
2
-
a
2
=
0
,
superscript
𝑚
2
2
subscript
𝑥
0
subscript
𝑦
0
superscript
subscript
𝑥
0
2
superscript
𝑎
2
𝑚
superscript
subscript
𝑦
0
2
superscript
𝑏
2
superscript
subscript
𝑥
0
2
superscript
𝑎
2
0
{\displaystyle m^{2}-{\frac{2x_{0}y_{0}}{x_{0}^{2}-a^{2}}}m+{\frac{y_{0}^{2}-b%
^{2}}{x_{0}^{2}-a^{2}}}=0,}
which has two solutions
m
1
,
m
2
subscript
𝑚
1
subscript
𝑚
2
{\displaystyle{\displaystyle m_{1},m_{2}}}
corresponding to the two tangents passing through
(
x
0
,
y
0
)
subscript
𝑥
0
subscript
𝑦
0
{\displaystyle{\displaystyle(x_{0},y_{0})}}
. The constant term of a monic quadratic equation is always the product of its solutions. Hence, if the tangents meet at
(
x
0
,
y
0
)
subscript
𝑥
0
subscript
𝑦
0
{\displaystyle{\displaystyle(x_{0},y_{0})}}
orthogonally, the following equations hold:
Orthoptics (red circles) of a circle, ellipses and hyperbolas
m
1
m
2
=
-
1
=
y
0
2
-
b
2
x
0
2
-
a
2
subscript
𝑚
1
subscript
𝑚
2
1
superscript
subscript
𝑦
0
2
superscript
𝑏
2
superscript
subscript
𝑥
0
2
superscript
𝑎
2
{\displaystyle m_{1}m_{2}=-1={\frac{y_{0}^{2}-b^{2}}{x_{0}^{2}-a^{2}}}}
The last equation is equivalent to
x
0
2
+
y
0
2
=
a
2
+
b
2
.
superscript
subscript
𝑥
0
2
superscript
subscript
𝑦
0
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle x_{0}^{2}+y_{0}^{2}=a^{2}+b^{2}\,.}
From (1) and (2) one gets:
The intersection points of orthogonal tangents are points of the circle
x
2
+
y
2
=
a
2
+
b
2
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle{\displaystyle x^{2}+y^{2}=a^{2}+b^{2}}}
.
قطع زائد
The ellipse case can be adopted nearly exactly to the hyperbola case. The only changes to be made are to replace
b
2
superscript
𝑏
2
{\displaystyle{\displaystyle b^{2}}}
with
-
b
2
superscript
𝑏
2
{\displaystyle{\displaystyle-b^{2}}}
and to restrict m to |m | > b / a . Therefore:
The intersection points of orthogonal tangents are points of the circle
x
2
+
y
2
=
a
2
-
b
2
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle{\displaystyle x^{2}+y^{2}=a^{2}-b^{2}}}
, where
a > b .
متعامد مماسات كويكب
Orthoptic (purple) of an astroid
An astroid can be described by the parametric representation
𝐜
(
t
)
=
(
cos
3
t
,
sin
3
t
)
,
0
≤
t
<
2
π
.
formulae-sequence
𝐜
𝑡
superscript
3
𝑡
superscript
3
𝑡
0
𝑡
2
𝜋
{\displaystyle\mathbf{c}(t)=\left(\cos^{3}t,\sin^{3}t\right),\quad 0\leq t<2%
\pi.}
From the condition
𝐜
˙
(
t
)
⋅
𝐜
˙
(
t
+
α
)
=
0
⋅
˙
𝐜
𝑡
˙
𝐜
𝑡
𝛼
0
{\displaystyle\mathbf{\dot{c}}(t)\cdot\mathbf{\dot{c}}(t+\alpha)=0}
one recognizes the distance α in parameter space at which an orthogonal tangent to ċ (t ) appears. It turns out that the distance is independent of parameter t , namely α = ± π / 2 . The equations of the (orthogonal) tangents at the points c (t ) and c (t + π / 2 ) are respectively:
y
=
-
tan
t
(
x
-
cos
3
t
)
+
sin
3
t
,
y
=
1
tan
t
(
x
+
sin
3
t
)
+
cos
3
t
.
𝑦
absent
𝑡
𝑥
superscript
3
𝑡
superscript
3
𝑡
𝑦
absent
1
𝑡
𝑥
superscript
3
𝑡
superscript
3
𝑡
{\displaystyle{\begin{aligned} \displaystyle y&\displaystyle=-\tan t\left(x-%
\cos^{3}t\right)+\sin^{3}t,\\
\displaystyle y&\displaystyle={\frac{1}{\tan t}}\left(x+\sin^{3}t\right)+\cos^%
{3}t.\end{aligned}}}
Their common point has coordinates:
x
=
sin
t
cos
t
(
sin
t
-
cos
t
)
,
y
=
sin
t
cos
t
(
sin
t
+
cos
t
)
.
𝑥
absent
𝑡
𝑡
𝑡
𝑡
𝑦
absent
𝑡
𝑡
𝑡
𝑡
{\displaystyle{\begin{aligned} \displaystyle x&\displaystyle=\sin t\cos t\left%
(\sin t-\cos t\right),\\
\displaystyle y&\displaystyle=\sin t\cos t\left(\sin t+\cos t\right).\end{%
aligned}}}
This is simultaneously a parametric representation of the orthoptic.
Elimination of the parameter t yields the implicit representation
2
(
x
2
+
y
2
)
3
-
(
x
2
-
y
2
)
2
=
0
.
2
superscript
superscript
𝑥
2
superscript
𝑦
2
3
superscript
superscript
𝑥
2
superscript
𝑦
2
2
0
{\displaystyle 2\left(x^{2}+y^{2}\right)^{3}-\left(x^{2}-y^{2}\right)^{2}=0.}
Introducing the new parameter φ = t − 5π / 4 one gets
x
=
1
2
cos
(
2
φ
)
cos
φ
,
y
=
1
2
cos
(
2
φ
)
sin
φ
.
𝑥
absent
1
2
2
𝜑
𝜑
𝑦
absent
1
2
2
𝜑
𝜑
{\displaystyle{\begin{aligned} \displaystyle x&\displaystyle={\tfrac{1}{\sqrt{%
2}}}\cos(2\varphi)\cos\varphi,\\
\displaystyle y&\displaystyle={\tfrac{1}{\sqrt{2}}}\cos(2\varphi)\sin\varphi.%
\end{aligned}}}
(The proof uses the angle sum and difference identities .) Hence we get the polar representation
r
=
1
2
cos
(
2
φ
)
,
0
≤
φ
<
2
π
formulae-sequence
𝑟
1
2
2
𝜑
0
𝜑
2
𝜋
{\displaystyle r={\tfrac{1}{\sqrt{2}}}\cos(2\varphi),\quad 0\leq\varphi<2\pi}
of the orthoptic. Hence:
Isoptic of a parabola, an ellipse and a hyperbola
Isoptics (purple) of a parabola for angles 80° and 100°
Isoptics (purple) of an ellipse for angles 80° and 100°
Isoptics (purple) of a hyperbola for angles 80° and 100°
Below the isotopics for angles α ≠ 90° are listed. They are called α -isoptics. For the proofs see below .
Equations of the isoptics
Parabola:
The α -isoptics of the parabola with equation y = ax 2 are the branches of the hyperbola
x
2
-
tan
2
α
(
y
+
1
4
a
)
2
-
y
a
=
0
.
superscript
𝑥
2
superscript
2
𝛼
superscript
𝑦
1
4
𝑎
2
𝑦
𝑎
0
{\displaystyle x^{2}-\tan^{2}\alpha\left(y+{\frac{1}{4a}}\right)^{2}-{\frac{y}%
{a}}=0.}
The branches of the hyperbola provide the isoptics for the two angles α and 180° − α (see picture).
Ellipse:
The α -isoptics of the ellipse with equation x 2 / a 2 + y 2 / b 2 = 1 are the two parts of the degree-4 curve
(
x
2
+
y
2
-
a
2
-
b
2
)
2
tan
2
α
=
4
(
a
2
y
2
+
b
2
x
2
-
a
2
b
2
)
superscript
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
2
superscript
2
𝛼
4
superscript
𝑎
2
superscript
𝑦
2
superscript
𝑏
2
superscript
𝑥
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle\left(x^{2}+y^{2}-a^{2}-b^{2}\right)^{2}\tan^{2}\alpha=4\left(a^%
{2}y^{2}+b^{2}x^{2}-a^{2}b^{2}\right)}
(see picture).
Hyperbola:
The α -isoptics of the hyperbola with the equation x 2 / a 2 − y 2 / b 2 = 1 are the two parts of the degree-4 curve
(
x
2
+
y
2
-
a
2
+
b
2
)
2
tan
2
α
=
4
(
a
2
y
2
-
b
2
x
2
+
a
2
b
2
)
.
superscript
superscript
𝑥
2
superscript
𝑦
2
superscript
𝑎
2
superscript
𝑏
2
2
superscript
2
𝛼
4
superscript
𝑎
2
superscript
𝑦
2
superscript
𝑏
2
superscript
𝑥
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle\left(x^{2}+y^{2}-a^{2}+b^{2}\right)^{2}\tan^{2}\alpha=4\left(a^%
{2}y^{2}-b^{2}x^{2}+a^{2}b^{2}\right).}
البراهين
Parabola:
A parabola y = ax 2 can be parametrized by the slope of its tangents m = 2ax :
𝐜
(
m
)
=
(
m
2
a
,
m
2
4
a
)
,
m
∈
ℝ
.
formulae-sequence
𝐜
𝑚
𝑚
2
𝑎
superscript
𝑚
2
4
𝑎
𝑚
ℝ
{\displaystyle\mathbf{c}(m)=\left({\frac{m}{2a}},{\frac{m^{2}}{4a}}\right),%
\quad m\in\mathbb{R}.}
The tangent with slope m has the equation
y
=
m
x
-
m
2
4
a
.
𝑦
𝑚
𝑥
superscript
𝑚
2
4
𝑎
{\displaystyle y=mx-{\frac{m^{2}}{4a}}.}
The point (x 0 , y 0 ) is on the tangent if and only if
y
0
=
m
x
0
-
m
2
4
a
.
subscript
𝑦
0
𝑚
subscript
𝑥
0
superscript
𝑚
2
4
𝑎
{\displaystyle y_{0}=mx_{0}-{\frac{m^{2}}{4a}}.}
This means the slopes m 1 , m 2 of the two tangents containing (x 0 , y 0 ) fulfil the quadratic equation
m
2
-
4
a
x
0
m
+
4
a
y
0
=
0
.
superscript
𝑚
2
4
𝑎
subscript
𝑥
0
𝑚
4
𝑎
subscript
𝑦
0
0
{\displaystyle m^{2}-4ax_{0}m+4ay_{0}=0.}
If the tangents meet at angle α or 180° − α , the equation
tan
2
α
=
(
m
1
-
m
2
1
+
m
1
m
2
)
2
superscript
2
𝛼
superscript
subscript
𝑚
1
subscript
𝑚
2
1
subscript
𝑚
1
subscript
𝑚
2
2
{\displaystyle\tan^{2}\alpha=\left({\frac{m_{1}-m_{2}}{1+m_{1}m_{2}}}\right)^{%
2}}
must be fulfilled. Solving the quadratic equation for m , and inserting m 1 , m 2 into the last equation, one gets
x
0
2
-
tan
2
α
(
y
0
+
1
4
a
)
2
-
y
0
a
=
0
.
superscript
subscript
𝑥
0
2
superscript
2
𝛼
superscript
subscript
𝑦
0
1
4
𝑎
2
subscript
𝑦
0
𝑎
0
{\displaystyle x_{0}^{2}-\tan^{2}\alpha\left(y_{0}+{\frac{1}{4a}}\right)^{2}-{%
\frac{y_{0}}{a}}=0.}
This is the equation of the hyperbola above. Its branches bear the two isoptics of the parabola for the two angles α and 180° − α .
Ellipse:
In the case of an ellipse x 2 / a 2 + y 2 / b 2 = 1 one can adopt the idea for the orthoptic for the quadratic equation
m
2
-
2
x
0
y
0
x
0
2
-
a
2
m
+
y
0
2
-
b
2
x
0
2
-
a
2
=
0
.
superscript
𝑚
2
2
subscript
𝑥
0
subscript
𝑦
0
superscript
subscript
𝑥
0
2
superscript
𝑎
2
𝑚
superscript
subscript
𝑦
0
2
superscript
𝑏
2
superscript
subscript
𝑥
0
2
superscript
𝑎
2
0
{\displaystyle m^{2}-{\frac{2x_{0}y_{0}}{x_{0}^{2}-a^{2}}}m+{\frac{y_{0}^{2}-b%
^{2}}{x_{0}^{2}-a^{2}}}=0.}
Now, as in the case of a parabola, the quadratic equation has to be solved and the two solutions m 1 , m 2 must be inserted into the equation
tan
2
α
=
(
m
1
-
m
2
1
+
m
1
m
2
)
2
.
superscript
2
𝛼
superscript
subscript
𝑚
1
subscript
𝑚
2
1
subscript
𝑚
1
subscript
𝑚
2
2
{\displaystyle\tan^{2}\alpha=\left({\frac{m_{1}-m_{2}}{1+m_{1}m_{2}}}\right)^{%
2}.}
Rearranging shows that the isoptics are parts of the degree-4 curve:
(
x
0
2
+
y
0
2
-
a
2
-
b
2
)
2
tan
2
α
=
4
(
a
2
y
0
2
+
b
2
x
0
2
-
a
2
b
2
)
.
superscript
superscript
subscript
𝑥
0
2
superscript
subscript
𝑦
0
2
superscript
𝑎
2
superscript
𝑏
2
2
superscript
2
𝛼
4
superscript
𝑎
2
superscript
subscript
𝑦
0
2
superscript
𝑏
2
superscript
subscript
𝑥
0
2
superscript
𝑎
2
superscript
𝑏
2
{\displaystyle\left(x_{0}^{2}+y_{0}^{2}-a^{2}-b^{2}\right)^{2}\tan^{2}\alpha=4%
\left(a^{2}y_{0}^{2}+b^{2}x_{0}^{2}-a^{2}b^{2}\right).}
Hyperbola:
The solution for the case of a hyperbola can be adopted from the ellipse case by replacing b 2 with −b 2 (as in the case of the orthoptics, see above ).
To visualize the isoptics, see implicit curve .
الهامش
المراجع
وصلات خارجية
قالب:Differential transforms of plane curves