ترسيب فيزيائي للبخار

التريب الفيزيائي للبخار Physical vapor deposition (PVD)، هو وصف عام لعدد من طرق ترسيب البخار تحت التفريغ من أجل القيام بعملية تكوين طبقة سطحية رقيقة على سطح الركازات، وذلك بواسطة طرق فيزيائية مثل إجراء عملية تبخر عند درجات حرارة مرتفعة وتحت الفراغ مع إجراء عمليات تكثيف متتالية، أو القذف بالرش المهبطي للبلازما.
تجري عمليات الترسيب الفيزيائي للبخار دون حدوث تفاعل كيميائي على سطح الركازة. في حال حدوث هذا الأمر يصنف الترسيب على أنه ترسيب كيميائي للبخار.
يستخدم الترسيب الفيزيائي للبخار في مجال تصنيع نبائط أشباه الموصلات ومجال إضافة الأغشية الرقيقة المعدنية على أسطح المواد البلاستيكية.
أنواع الترسيب الفيزيائي للبخار
يشمل الترسيب الفيزيائي للبخار كل من:
- ترسيب القوس المهبطي، حيث تحدث عملية تفريغ قوس كهربائي عالي الشدة على المادة الهدف الموجودة على المهبط، مما يؤدي إلى تشكل أيونات في الحالة الغازية (بخار)، والذي يتم ترسيبه وتكثيفه على المادة الهدف.
- ترسيب فيزيائي للبخار بالحزمة الإلكترونية، حيث تسخن المادة المراد ترسيبها إلى درجات حرارة عالية لتصبح بالحالة الغازية وذلك بواسطة تسليط حزمة إلكترونية تحت التفريغ العالي، ومن ثم القيام بعملية انتشار للبخار بيترسب بالتكثيف على السطح الهدف.
- ترسيب بالتبخير، حيث تسخن المادة المراد ترسيبها إلى درجات حرارة عالية لتصبح بالحالة الغازية وذلك بواسطة وشيعة كهربائية تحت التفريغ المنخفض.[1][2]
- ترسيب الليزر النبضي، حيث يستخدم ليزر نبضي عالي الشدة من أجل تذرية المواد إلى بخار.
- ترسيب بالرش المهبطي، حيث تلفظ الذرات من مادة صلبة لدى تعريضها إلى قذف من جسيمات عالية الطاقة.
المقارنة بتقنيات الترسيب الأخرى
المزايا
- PVD coatings are sometimes harder and more corrosion-resistant than coatings applied by electroplating processes. Most coatings have high temperature and good impact strength, excellent abrasion resistance and are so durable that protective topcoats are rarely necessary.
- PVD coatings have the ability to utilize virtually any type of inorganic and some organic coating materials on an equally diverse group of substrates and surfaces using a wide variety of finishes.
- PVD processes are often more environmentally friendly than traditional coating processes such as electroplating and painting.[3]
- More than one technique can be used to deposit a given film.
- PVD can be performed at lower temperatures compared to chemical vapor deposition (CVD) and other thermal processes.[4] This makes it suitable for coating temperature-sensitive substrates, such as plastics and certain metals, without causing damage or deformation.[5]
- PVD technologies can be scaled from small laboratory setups to large industrial systems, offering flexibility for different production volumes and sizes. This scalability makes it accessible for both research and commercial applications.[4]
العيوب
- Specific technologies can impose constraints; for example, the line-of-sight transfer is typical of most PVD coating techniques, however, some methods allow full coverage of complex geometries.
- Some PVD technologies operate at high temperatures and vacuums, requiring special attention by operating personnel and sometimes a cooling water system to dissipate large heat loads.
التطبيقات
زجاج متباين الخواص
PVD can be used as an application to make anisotropic glasses of low molecular weight for organic semiconductors.[6] The parameter needed to allow the formation of this type of glass is molecular mobility and anisotropic structure at the free surface of the glass.[6] The configuration of the polymer is important where it needs to be positioned in a lower energy state before the added molecules bury the material through a deposition. This process of adding molecules to the structure starts to equilibrate and gain mass and bulk out to have more kinetic stability.[6] The packing of molecules here through PVD is face-on, meaning not at the long tail end, allows further overlap of pi orbitals as well which also increases the stability of added molecules and the bonds. The orientation of these added materials is dependent mainly on temperature for when molecules will be deposited or extracted from the molecule.[6] The equilibration of the molecules is what provides the glass with its anisotropic characteristics. The anisotropy of these glasses is valuable as it allows a higher charge carrier mobility.[6] This process of packing in glass in an anisotropic way is valuable due to its versatility and the fact that glass provides added benefits beyond crystals, such as homogeneity and flexibility of composition.
تطبيقات الزينة
By varying the composition and duration of the process, a range of colors can be produced by PVD on stainless steel. The resulting colored stainless steel product can appear as brass, bronze, and other metals or alloys. This PVD-colored stainless steel can be used as exterior cladding for buildings and structures, such as the Vessel sculpture in New York City and The Bund in Shanghai. It is also used for interior hardware, paneling, and fixtures, and is even used on some consumer electronics, like the Space Gray and Gold finishes of the iPhone and Apple Watch.[بحاجة لمصدر]
أدوات القطع
PVD is used to enhance the wear resistance of steel cutting tools' surfaces and decrease the risk of adhesion and sticking between tools and a workpiece. This includes tools used in metalworking or plastic injection molding.[7] The coating is typically a thin ceramic layer less than 4 μm that has very high hardness and low friction. It is necessary to have high hardness of workpieces to ensure dimensional stability of coating to avoid brittling. It is possible to combine PVD with a plasma nitriding treatment of steel to increase the load bearing capacity of the coating.[7] Chromium nitride (CrN), titanium nitride (TiN), and titanium carbonitride (TiCN) may be used for PVD coating for plastic molding dies.[7]
تطبيقات أخرى
PVD coatings are generally used to improve hardness, increase wear resistance, and prevent oxidation. They can also be used for aesthetic purposes. Thus, such coatings are used in a wide range of applications such as:
- الفضاء الجوي
- صناعة السيارات
- الجراحة/الطب[8]
- الصبغات والقوالب لجميع أنواع معالجة الخامات
- أدوات القطع
- الأسلحة النارية
- البصريات
- الساعات
- الأغشية الرقيقة (دهانات النوافذ، تغليف الأغذية، الخ)
- أنابيب السهام المريشة
- المعادن (الألومنيوم، النحاس، البروز، الخ)
انظر أيضاً
الهوامش
- ^ He, Zhenping; Kretzschmar, Ilona (6 December 2013). "Template-Assisted GLAD: Approach to Single and Multipatch Patchy Particles with Controlled Patch Shape". Langmuir. 29 (51): 15755–15761. doi:10.1021/la404592z.
- ^ He, Zhenping; Kretzschmar, Ilona (18 June 2012). "Template-Assisted Fabrication of Patchy Particles with Uniform Patches". Langmuir. 28 (26): 9915–9919. doi:10.1021/la3017563.
- ^ Green, Julissa (Sep 1, 2023). "Electron Beam Evaporation VS Thermal Evaporation". Stanford Advanced Materials. Retrieved July 8, 2024.
- ^ أ ب Donald M. Mattox (2010). "Chapter 1 : Introduction". Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition). William Andrew Publishing. pp. 1–24. ISBN 9780815520375.
- ^ Mikell P. Groover (2019). "Chapter 24 : Surface processing applications". Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7th Edition. Wiley. p. 648. ISBN 9781119475217.
- ^ أ ب ت ث ج Gujral, Ankit; Yu, Lian; Ediger, M.D. (2018-04-01). "Anisotropic organic glasses". Current Opinion in Solid State and Materials Science (in الإنجليزية). 22 (2): 49–57. Bibcode:2018COSSM..22...49G. doi:10.1016/j.cossms.2017.11.001. ISSN 1359-0286. S2CID 102671908.
- ^ أ ب ت "UDDEHOLM TOOL STEEL FOR PVD COATINGS" (PDF). 2020.
- ^ http://www.ionfusion.com/technology
المصادر
- Anders, Andre (editor). Handbook of Plasma Immersion Ion Implantation and Deposition. New York: Wiley-Interscience, 2000. ISBN 0-471-24698-0.
- Bach, Hans, and Dieter Krause (editors). Thin Films on Glass. Schott series on glass and glass ceramics. London: Springer-Verlag, 2003. ISBN 3-540-58597-4.
- Bunshah, Roitan F. (editor). Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, second edition. Materials science and process technology series. Park Ridge, N.J.: Noyes Publications, 1994. ISBN 0-8155-1337-2.
- Gläser, Hans Joachim. Large Area Glass Coating. Dresden: Von Ardenne Anlagentechnik, 2000. ISBN 3-00-004953-3.
- Glocker, David A., and S. Ismat Shah (editors). Handbook of Thin Film Process Technology (2 vol. set). Bristol, U.K.: Institute of Physics Pub, 2002. ISBN 0-7503-0833-8.
- Mahan, John E. Physical Vapor Deposition of Thin Films. New York: John Wiley & Sons, 2000. ISBN 0-471-33001-9.
- Mattox, Donald M. Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control.. Westwood, N.J.: Noyes Publications, 1998. ISBN 0-8155-1422-0.
- Mattox, Donald M. The Foundations of Vacuum Coating Technology. Norwich, N.Y.: Noyes Publications/William Andrew Pub., 2003. ISBN 0-8155-1495-6.
- Mattox, Donald M. and Vivivenne Harwood Mattox (editors). 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters. Albuquerque, N.M.: Society of Vacuum Coaters, 2007. ISBN 978-1-878068-27-9.
- Powell, Carroll F., Joseph H. Oxley, and John Milton Blocher (editors). Vapor Deposition. The Electrochemical Society series. New York: Wiley, 1966.
- Westwood, William D. Sputter Deposition. AVS Education Committee book series, v. 2. New York: Education Committee, AVS, 2003. ISBN 0-7354-0105-5.
- Willey, Ronald R. Practical Monitoring and Control of Optical Thin Films. Charlevoix, MI: Willey Optical, Consultants, 2007. ISBN 978-0-615-13760-5.
- Willey, Ronald R. Practical Equipment, Materials, and Processes for Optical Thin Films. Charlevoix, MI: Willey Optical, Consultants, 2007. ISBN 978-0-615-14397-2.
- Snyder, Tim. "NASA’s PVD Chrome Coating Can Enhance Your Driving Experience." 4wheelonline.com. 4wheelonline, 6 May 2013. Web. <http://4wheelonline.com/nasa-pvd-chrome-coating.226590.0>.
وصلات خارجية
- Society of Vacuum Coaters
- PVD Animation—an animation of a generic PVD sputter tool
- Physical vapor deposition