Base-dependent property of integers
In mathematics , a natural number in a given number base is a
p
𝑝
{\displaystyle{\displaystyle p}}
-Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has
p
𝑝
{\displaystyle{\displaystyle p}}
digits, that add up to the original number. الأعداد مسماة على اسم د. ر. كاپريكار .
التعريف والخصائص
Let
n
𝑛
{\displaystyle{\displaystyle n}}
be a natural number. We define the Kaprekar function for base
b
>
1
𝑏
1
{\displaystyle{\displaystyle b>1}}
and power
p
>
0
𝑝
0
{\displaystyle{\displaystyle p>0}}
F
p
,
b
:
ℕ
→
ℕ
:
subscript
𝐹
𝑝
𝑏
→
ℕ
ℕ
{\displaystyle{\displaystyle F_{p,b}:\mathbb{N}\rightarrow\mathbb{N}}}
to be the following:
F
p
,
b
(
n
)
=
α
+
β
subscript
𝐹
𝑝
𝑏
𝑛
𝛼
𝛽
{\displaystyle{\displaystyle F_{p,b}(n)=\alpha+\beta}}
,
where
β
=
n
2
mod
b
p
𝛽
modulo
superscript
𝑛
2
superscript
𝑏
𝑝
{\displaystyle{\displaystyle\beta=n^{2}{\bmod{b}}^{p}}}
and
α
=
n
2
-
β
b
p
𝛼
superscript
𝑛
2
𝛽
superscript
𝑏
𝑝
{\displaystyle{\displaystyle\alpha={\frac{n^{2}-\beta}{b^{p}}}}}
A natural number
n
𝑛
{\displaystyle{\displaystyle n}}
is a
p
𝑝
{\displaystyle{\displaystyle p}}
-Kaprekar number if it is a fixed point for
F
p
,
b
subscript
𝐹
𝑝
𝑏
{\displaystyle{\displaystyle F_{p,b}}}
, which occurs if
F
p
,
b
(
n
)
=
n
subscript
𝐹
𝑝
𝑏
𝑛
𝑛
{\displaystyle{\displaystyle F_{p,b}(n)=n}}
.
0
0
{\displaystyle{\displaystyle 0}}
and
1
1
{\displaystyle{\displaystyle 1}}
are trivial Kaprekar numbers for all
b
𝑏
{\displaystyle{\displaystyle b}}
and
p
𝑝
{\displaystyle{\displaystyle p}}
, all other Kaprekar numbers are nontrivial Kaprekar numbers .
For example, in base 10 , 45 is a 2-Kaprekar number, because
β
=
n
2
mod
b
p
=
45
2
mod
10
2
=
25
𝛽
modulo
superscript
𝑛
2
superscript
𝑏
𝑝
modulo
superscript
45
2
superscript
10
2
25
{\displaystyle{\displaystyle\beta=n^{2}{\bmod{b}}^{p}=45^{2}{\bmod{1}}0^{2}=25}}
α
=
n
2
-
β
b
p
=
45
2
-
25
10
2
=
20
𝛼
superscript
𝑛
2
𝛽
superscript
𝑏
𝑝
superscript
45
2
25
superscript
10
2
20
{\displaystyle{\displaystyle\alpha={\frac{n^{2}-\beta}{b^{p}}}={\frac{45^{2}-2%
5}{10^{2}}}=20}}
F
2
,
10
(
45
)
=
α
+
β
=
20
+
25
=
45
subscript
𝐹
2
10
45
𝛼
𝛽
20
25
45
{\displaystyle{\displaystyle F_{2,10}(45)=\alpha+\beta=20+25=45}}
A natural number
n
𝑛
{\displaystyle{\displaystyle n}}
is a sociable Kaprekar number if it is a periodic point for
F
p
,
b
subscript
𝐹
𝑝
𝑏
{\displaystyle{\displaystyle F_{p,b}}}
, where
F
p
,
b
k
(
n
)
=
n
superscript
subscript
𝐹
𝑝
𝑏
𝑘
𝑛
𝑛
{\displaystyle{\displaystyle F_{p,b}^{k}(n)=n}}
for a positive integer
k
𝑘
{\displaystyle{\displaystyle k}}
(where
F
p
,
b
k
superscript
subscript
𝐹
𝑝
𝑏
𝑘
{\displaystyle{\displaystyle F_{p,b}^{k}}}
is the
k
𝑘
{\displaystyle{\displaystyle k}}
th iterate of
F
p
,
b
subscript
𝐹
𝑝
𝑏
{\displaystyle{\displaystyle F_{p,b}}}
), and forms a cycle of period
k
𝑘
{\displaystyle{\displaystyle k}}
. A Kaprekar number is a sociable Kaprekar number with
k
=
1
𝑘
1
{\displaystyle{\displaystyle k=1}}
, and a amicable Kaprekar number is a sociable Kaprekar number with
k
=
2
𝑘
2
{\displaystyle{\displaystyle k=2}}
.
The number of iterations
i
𝑖
{\displaystyle{\displaystyle i}}
needed for
F
p
,
b
i
(
n
)
superscript
subscript
𝐹
𝑝
𝑏
𝑖
𝑛
{\displaystyle{\displaystyle F_{p,b}^{i}(n)}}
to reach a fixed point is the Kaprekar function's persistence of
n
𝑛
{\displaystyle{\displaystyle n}}
, and undefined if it never reaches a fixed point.
There are only a finite number of
p
𝑝
{\displaystyle{\displaystyle p}}
-Kaprekar numbers and cycles for a given base
b
𝑏
{\displaystyle{\displaystyle b}}
, because if
n
=
b
p
+
m
𝑛
superscript
𝑏
𝑝
𝑚
{\displaystyle{\displaystyle n=b^{p}+m}}
, where
m
>
0
𝑚
0
{\displaystyle{\displaystyle m>0}}
then
n
2
=
(
b
p
+
m
)
2
=
b
2
p
+
2
m
b
p
+
m
2
=
(
b
p
+
2
m
)
b
p
+
m
2
superscript
𝑛
2
absent
superscript
superscript
𝑏
𝑝
𝑚
2
missing-subexpression
absent
superscript
𝑏
2
𝑝
2
𝑚
superscript
𝑏
𝑝
superscript
𝑚
2
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑚
superscript
𝑏
𝑝
superscript
𝑚
2
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle n^{2}&\displaystyle%
=(b^{p}+m)^{2}\\
&\displaystyle=b^{2p}+2mb^{p}+m^{2}\\
&\displaystyle=(b^{p}+2m)b^{p}+m^{2}\\
\end{aligned}}}}
and
β
=
m
2
𝛽
superscript
𝑚
2
{\displaystyle{\displaystyle\beta=m^{2}}}
,
α
=
b
p
+
2
m
𝛼
superscript
𝑏
𝑝
2
𝑚
{\displaystyle{\displaystyle\alpha=b^{p}+2m}}
, and
F
p
,
b
(
n
)
=
b
p
+
2
m
+
m
2
=
n
+
(
m
2
+
m
)
>
n
subscript
𝐹
𝑝
𝑏
𝑛
superscript
𝑏
𝑝
2
𝑚
superscript
𝑚
2
𝑛
superscript
𝑚
2
𝑚
𝑛
{\displaystyle{\displaystyle F_{p,b}(n)=b^{p}+2m+m^{2}=n+(m^{2}+m)>n}}
. Only when
n
≤
b
p
𝑛
superscript
𝑏
𝑝
{\displaystyle{\displaystyle n\leq b^{p}}}
do Kaprekar numbers and cycles exist.
If
d
𝑑
{\displaystyle{\displaystyle d}}
is any divisor of
p
𝑝
{\displaystyle{\displaystyle p}}
, then
n
𝑛
{\displaystyle{\displaystyle n}}
is also a
p
𝑝
{\displaystyle{\displaystyle p}}
-Kaprekar number for base
b
p
superscript
𝑏
𝑝
{\displaystyle{\displaystyle b^{p}}}
.
In base
b
=
2
𝑏
2
{\displaystyle{\displaystyle b=2}}
, all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form
2
n
(
2
n
+
1
-
1
)
superscript
2
𝑛
superscript
2
𝑛
1
1
{\displaystyle{\displaystyle 2^{n}(2^{n+1}-1)}}
or
2
n
(
2
n
+
1
+
1
)
superscript
2
𝑛
superscript
2
𝑛
1
1
{\displaystyle{\displaystyle 2^{n}(2^{n+1}+1)}}
for natural number
n
𝑛
{\displaystyle{\displaystyle n}}
are Kaprekar numbers in base 2 .
التعريف حسب نظرية الفئات وقواسم الوحدة
We can define the set
K
(
N
)
𝐾
𝑁
{\displaystyle{\displaystyle K(N)}}
for a given integer
N
𝑁
{\displaystyle{\displaystyle N}}
as the set of integers
X
𝑋
{\displaystyle{\displaystyle X}}
for which there exist natural numbers
A
𝐴
{\displaystyle{\displaystyle A}}
and
B
𝐵
{\displaystyle{\displaystyle B}}
satisfying the Diophantine equation [1]
X
2
=
A
N
+
B
superscript
𝑋
2
𝐴
𝑁
𝐵
{\displaystyle{\displaystyle X^{2}=AN+B}}
, where
0
≤
B
<
N
0
𝐵
𝑁
{\displaystyle{\displaystyle 0\leq B<N}}
X
=
A
+
B
𝑋
𝐴
𝐵
{\displaystyle{\displaystyle X=A+B}}
An
n
𝑛
{\displaystyle{\displaystyle n}}
-Kaprekar number for base
b
𝑏
{\displaystyle{\displaystyle b}}
is then one which lies in the set
K
(
b
n
)
𝐾
superscript
𝑏
𝑛
{\displaystyle{\displaystyle K(b^{n})}}
.
It was shown in 2000[1] that there is a bijection between the unitary divisors of
N
-
1
𝑁
1
{\displaystyle{\displaystyle N-1}}
and the set
K
(
N
)
𝐾
𝑁
{\displaystyle{\displaystyle K(N)}}
defined above. Let
Inv
(
a
,
c
)
Inv
𝑎
𝑐
{\displaystyle{\displaystyle\operatorname{Inv}(a,c)}}
denote the multiplicative inverse of
a
𝑎
{\displaystyle{\displaystyle a}}
modulo
c
𝑐
{\displaystyle{\displaystyle c}}
, namely the least positive integer
m
𝑚
{\displaystyle{\displaystyle m}}
such that
a
m
=
1
mod
c
𝑎
𝑚
modulo
1
𝑐
{\displaystyle{\displaystyle am=1{\bmod{c}}}}
, and for each unitary divisor
d
𝑑
{\displaystyle{\displaystyle d}}
of
N
-
1
𝑁
1
{\displaystyle{\displaystyle N-1}}
let
e
=
N
-
1
d
𝑒
𝑁
1
𝑑
{\displaystyle{\displaystyle e={\frac{N-1}{d}}}}
and
ζ
(
d
)
=
d
Inv
(
d
,
e
)
𝜁
𝑑
𝑑
Inv
𝑑
𝑒
{\displaystyle{\displaystyle\zeta(d)=d\ {\text{Inv}}(d,e)}}
. Then the function
ζ
𝜁
{\displaystyle{\displaystyle\zeta}}
is a bijection from the set of unitary divisors of
N
-
1
𝑁
1
{\displaystyle{\displaystyle N-1}}
onto the set
K
(
N
)
𝐾
𝑁
{\displaystyle{\displaystyle K(N)}}
. In particular, a number
X
𝑋
{\displaystyle{\displaystyle X}}
is in the set
K
(
N
)
𝐾
𝑁
{\displaystyle{\displaystyle K(N)}}
if and only if
X
=
d
Inv
(
d
,
e
)
𝑋
𝑑
Inv
𝑑
𝑒
{\displaystyle{\displaystyle X=d\ {\text{Inv}}(d,e)}}
for some unitary divisor
d
𝑑
{\displaystyle{\displaystyle d}}
of
N
-
1
𝑁
1
{\displaystyle{\displaystyle N-1}}
.
The numbers in
K
(
N
)
𝐾
𝑁
{\displaystyle{\displaystyle K(N)}}
occur in complementary pairs,
X
𝑋
{\displaystyle{\displaystyle X}}
and
N
-
X
𝑁
𝑋
{\displaystyle{\displaystyle N-X}}
. If
d
𝑑
{\displaystyle{\displaystyle d}}
is a unitary divisor of
N
-
1
𝑁
1
{\displaystyle{\displaystyle N-1}}
then so is
e
=
N
-
1
d
𝑒
𝑁
1
𝑑
{\displaystyle{\displaystyle e={\frac{N-1}{d}}}}
, and if
X
=
d
Inv
(
d
,
e
)
𝑋
𝑑
Inv
𝑑
𝑒
{\displaystyle{\displaystyle X=d\operatorname{Inv}(d,e)}}
then
N
-
X
=
e
Inv
(
e
,
d
)
𝑁
𝑋
𝑒
Inv
𝑒
𝑑
{\displaystyle{\displaystyle N-X=e\operatorname{Inv}(e,d)}}
.
Kaprekar numbers for
F
p
,
b
subscript
𝐹
𝑝
𝑏
{\displaystyle{\displaystyle F_{p,b}}}
b = 4k + 3 and p = 2n + 1
Let
k
𝑘
{\displaystyle{\displaystyle k}}
and
n
𝑛
{\displaystyle{\displaystyle n}}
be natural numbers, the number base
b
=
4
k
+
3
=
2
(
2
k
+
1
)
+
1
𝑏
4
𝑘
3
2
2
𝑘
1
1
{\displaystyle{\displaystyle b=4k+3=2(2k+1)+1}}
, and
p
=
2
n
+
1
𝑝
2
𝑛
1
{\displaystyle{\displaystyle p=2n+1}}
. Then:
X
1
=
b
p
-
1
2
=
(
2
k
+
1
)
∑
i
=
0
p
-
1
b
i
subscript
𝑋
1
superscript
𝑏
𝑝
1
2
2
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
𝑏
𝑖
{\displaystyle{\displaystyle X_{1}={\frac{b^{p}-1}{2}}=(2k+1)\sum_{i=0}^{p-1}b%
^{i}}}
is a Kaprekar number.
Proof
Let
X
1
=
b
p
-
1
2
=
b
-
1
2
∑
i
=
0
p
-
1
b
i
=
4
k
+
3
-
1
2
∑
i
=
0
2
n
+
1
-
1
b
i
=
(
2
k
+
1
)
∑
i
=
0
2
n
b
i
subscript
𝑋
1
absent
superscript
𝑏
𝑝
1
2
missing-subexpression
absent
𝑏
1
2
superscript
subscript
𝑖
0
𝑝
1
superscript
𝑏
𝑖
missing-subexpression
absent
4
𝑘
3
1
2
superscript
subscript
𝑖
0
2
𝑛
1
1
superscript
𝑏
𝑖
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
𝑏
𝑖
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle X_{1}&\displaystyle%
={\frac{b^{p}-1}{2}}\\
&\displaystyle={\frac{b-1}{2}}\sum_{i=0}^{p-1}b^{i}\\
&\displaystyle={\frac{4k+3-1}{2}}\sum_{i=0}^{2n+1-1}b^{i}\\
&\displaystyle=(2k+1)\sum_{i=0}^{2n}b^{i}\end{aligned}}}}
Then,
X
1
2
=
(
b
p
-
1
2
)
2
=
b
2
p
-
2
b
p
+
1
4
=
b
p
(
b
p
-
2
)
+
1
4
=
(
4
k
+
3
)
2
n
+
1
(
b
p
-
2
)
+
1
4
=
(
4
k
+
3
)
2
n
(
b
p
-
2
)
(
4
k
+
4
)
-
(
4
k
+
3
)
2
n
(
b
p
-
2
)
+
1
4
=
-
(
4
k
+
3
)
2
n
(
b
p
-
2
)
+
1
4
+
(
k
+
1
)
(
4
k
+
3
)
2
n
(
b
p
-
2
)
=
-
(
4
k
+
3
)
2
n
-
1
(
b
p
-
2
)
(
4
k
+
4
)
+
(
4
k
+
3
)
2
n
-
1
(
b
p
-
2
)
+
1
4
+
(
k
+
1
)
b
2
n
(
b
2
n
+
1
-
2
)
=
(
4
k
+
3
)
2
n
-
1
(
b
p
-
2
)
+
1
4
+
(
k
+
1
)
b
2
n
(
b
p
-
2
)
-
(
k
+
1
)
b
2
n
-
1
(
b
2
n
+
1
-
2
)
=
(
4
k
+
3
)
p
-
2
(
b
p
-
2
)
+
1
4
+
∑
i
=
p
-
2
p
-
1
(
-
1
)
i
(
k
+
1
)
b
i
(
b
p
-
2
)
=
(
4
k
+
3
)
p
-
2
(
b
p
-
2
)
+
1
4
+
(
b
p
-
2
)
(
k
+
1
)
∑
i
=
p
-
2
p
-
1
(
-
1
)
i
b
i
=
(
4
k
+
3
)
1
(
b
p
-
2
)
+
1
4
+
(
b
p
-
2
)
(
k
+
1
)
∑
i
=
1
p
-
1
(
-
1
)
i
b
i
=
-
(
b
p
-
2
)
+
1
4
+
(
b
p
-
2
)
(
k
+
1
)
∑
i
=
0
p
-
1
(
-
1
)
i
b
i
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
+
-
b
2
n
+
1
+
3
4
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
+
-
4
b
2
n
+
1
+
3
b
2
n
+
1
+
3
4
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
+
3
b
2
n
+
1
+
3
4
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
+
3
(
4
k
+
3
)
p
-
2
+
3
4
+
3
(
k
+
1
)
∑
i
=
p
-
2
p
-
1
(
-
1
)
i
b
i
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
+
3
(
4
k
+
3
)
1
+
3
4
+
3
(
k
+
1
)
∑
i
=
1
p
-
1
(
-
1
)
i
b
i
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
+
-
3
+
3
4
+
3
(
k
+
1
)
∑
i
=
0
p
-
1
(
-
1
)
i
b
i
=
(
b
p
-
2
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
+
3
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
=
(
b
p
-
2
+
3
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
=
(
b
p
+
1
)
(
k
+
1
)
(
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
-
b
p
=
(
b
p
+
1
)
(
-
1
+
(
k
+
1
)
∑
i
=
0
2
n
(
-
1
)
i
b
i
)
+
1
=
(
b
p
+
1
)
(
k
+
(
k
+
1
)
∑
i
=
1
2
n
(
-
1
)
i
b
i
)
+
1
=
(
b
p
+
1
)
(
k
+
(
k
+
1
)
∑
i
=
1
n
b
2
i
-
b
2
i
-
1
)
+
1
=
(
b
p
+
1
)
(
k
+
(
k
+
1
)
∑
i
=
1
n
(
b
-
1
)
b
2
i
-
1
)
+
1
=
(
b
p
+
1
)
(
k
+
∑
i
=
1
n
(
(
k
+
1
)
b
-
k
-
1
)
b
2
i
-
1
)
+
1
=
(
b
p
+
1
)
(
k
+
∑
i
=
1
n
(
k
b
+
(
4
k
+
3
)
-
k
-
1
)
b
2
i
-
1
)
+
1
=
(
b
p
+
1
)
(
k
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
1
=
b
p
(
k
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
superscript
subscript
𝑋
1
2
absent
superscript
superscript
𝑏
𝑝
1
2
2
missing-subexpression
absent
superscript
𝑏
2
𝑝
2
superscript
𝑏
𝑝
1
4
missing-subexpression
absent
superscript
𝑏
𝑝
superscript
𝑏
𝑝
2
1
4
missing-subexpression
absent
superscript
4
𝑘
3
2
𝑛
1
superscript
𝑏
𝑝
2
1
4
missing-subexpression
absent
superscript
4
𝑘
3
2
𝑛
superscript
𝑏
𝑝
2
4
𝑘
4
superscript
4
𝑘
3
2
𝑛
superscript
𝑏
𝑝
2
1
4
missing-subexpression
absent
superscript
4
𝑘
3
2
𝑛
superscript
𝑏
𝑝
2
1
4
𝑘
1
superscript
4
𝑘
3
2
𝑛
superscript
𝑏
𝑝
2
missing-subexpression
absent
superscript
4
𝑘
3
2
𝑛
1
superscript
𝑏
𝑝
2
4
𝑘
4
superscript
4
𝑘
3
2
𝑛
1
superscript
𝑏
𝑝
2
1
4
𝑘
1
superscript
𝑏
2
𝑛
superscript
𝑏
2
𝑛
1
2
missing-subexpression
absent
superscript
4
𝑘
3
2
𝑛
1
superscript
𝑏
𝑝
2
1
4
𝑘
1
superscript
𝑏
2
𝑛
superscript
𝑏
𝑝
2
𝑘
1
superscript
𝑏
2
𝑛
1
superscript
𝑏
2
𝑛
1
2
missing-subexpression
absent
superscript
4
𝑘
3
𝑝
2
superscript
𝑏
𝑝
2
1
4
superscript
subscript
𝑖
𝑝
2
𝑝
1
superscript
1
𝑖
𝑘
1
superscript
𝑏
𝑖
superscript
𝑏
𝑝
2
missing-subexpression
absent
superscript
4
𝑘
3
𝑝
2
superscript
𝑏
𝑝
2
1
4
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
𝑝
2
𝑝
1
superscript
1
𝑖
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
4
𝑘
3
1
superscript
𝑏
𝑝
2
1
4
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
1
𝑝
1
superscript
1
𝑖
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
𝑏
𝑝
2
1
4
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
1
𝑖
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
2
𝑛
1
3
4
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
4
superscript
𝑏
2
𝑛
1
3
superscript
𝑏
2
𝑛
1
3
4
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
3
superscript
𝑏
2
𝑛
1
3
4
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
3
superscript
4
𝑘
3
𝑝
2
3
4
3
𝑘
1
superscript
subscript
𝑖
𝑝
2
𝑝
1
superscript
1
𝑖
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
3
superscript
4
𝑘
3
1
3
4
3
𝑘
1
superscript
subscript
𝑖
1
𝑝
1
superscript
1
𝑖
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
3
3
4
3
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
1
𝑖
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
𝑏
𝑝
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
3
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
missing-subexpression
absent
superscript
𝑏
𝑝
2
3
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
superscript
𝑏
𝑝
missing-subexpression
absent
superscript
𝑏
𝑝
1
1
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
1
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
𝑘
1
superscript
subscript
𝑖
1
2
𝑛
superscript
1
𝑖
superscript
𝑏
𝑖
1
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
𝑘
1
superscript
subscript
𝑖
1
𝑛
superscript
𝑏
2
𝑖
superscript
𝑏
2
𝑖
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑏
1
superscript
𝑏
2
𝑖
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
1
𝑏
𝑘
1
superscript
𝑏
2
𝑖
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
4
𝑘
3
𝑘
1
superscript
𝑏
2
𝑖
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
1
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle X_{1}^{2}&%
\displaystyle=\left({\frac{b^{p}-1}{2}}\right)^{2}\\
&\displaystyle={\frac{b^{2p}-2b^{p}+1}{4}}\\
&\displaystyle={\frac{b^{p}(b^{p}-2)+1}{4}}\\
&\displaystyle={\frac{(4k+3)^{2n+1}(b^{p}-2)+1}{4}}\\
&\displaystyle={\frac{(4k+3)^{2n}(b^{p}-2)(4k+4)-(4k+3)^{2n}(b^{p}-2)+1}{4}}\\
&\displaystyle={\frac{-(4k+3)^{2n}(b^{p}-2)+1}{4}}+(k+1)(4k+3)^{2n}(b^{p}-2)\\
&\displaystyle={\frac{-(4k+3)^{2n-1}(b^{p}-2)(4k+4)+(4k+3)^{2n-1}(b^{p}-2)+1}{%
4}}+(k+1)b^{2n}(b^{2n+1}-2)\\
&\displaystyle={\frac{(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{p}-2)-(k+1)%
b^{2n-1}(b^{2n+1}-2)\\
&\displaystyle={\frac{(4k+3)^{p-2}(b^{p}-2)+1}{4}}+\sum_{i=p-2}^{p-1}(-1)^{i}(%
k+1)b^{i}(b^{p}-2)\\
&\displaystyle={\frac{(4k+3)^{p-2}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum_{i=p-2}^%
{p-1}(-1)^{i}b^{i}\\
&\displaystyle={\frac{(4k+3)^{1}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum_{i=1}^{p-1%
}(-1)^{i}b^{i}\\
&\displaystyle={\frac{-(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum_{i=0}^{p-1}(-1)^{i}%
b^{i}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)+{\frac{%
-b^{2n+1}+3}{4}}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)+{\frac{%
-4b^{2n+1}+3b^{2n+1}+3}{4}}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{%
\frac{3b^{2n+1}+3}{4}}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{%
\frac{3(4k+3)^{p-2}+3}{4}}+3(k+1)\sum_{i=p-2}^{p-1}(-1)^{i}b^{i}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{%
\frac{3(4k+3)^{1}+3}{4}}+3(k+1)\sum_{i=1}^{p-1}(-1)^{i}b^{i}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{%
\frac{-3+3}{4}}+3(k+1)\sum_{i=0}^{p-1}(-1)^{i}b^{i}\\
&\displaystyle=(b^{p}-2)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)+3(k+1)%
\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\
&\displaystyle=(b^{p}-2+3)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}%
\\
&\displaystyle=(b^{p}+1)(k+1)\left(\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\
&\displaystyle=(b^{p}+1)\left(-1+(k+1)\sum_{i=0}^{2n}(-1)^{i}b^{i}\right)+1\\
&\displaystyle=(b^{p}+1)\left(k+(k+1)\sum_{i=1}^{2n}(-1)^{i}b^{i}\right)+1\\
&\displaystyle=(b^{p}+1)\left(k+(k+1)\sum_{i=1}^{n}b^{2i}-b^{2i-1}\right)+1\\
&\displaystyle=(b^{p}+1)\left(k+(k+1)\sum_{i=1}^{n}(b-1)b^{2i-1}\right)+1\\
&\displaystyle=(b^{p}+1)\left(k+\sum_{i=1}^{n}((k+1)b-k-1)b^{2i-1}\right)+1\\
&\displaystyle=(b^{p}+1)\left(k+\sum_{i=1}^{n}(kb+(4k+3)-k-1)b^{2i-1}\right)+1%
\\
&\displaystyle=(b^{p}+1)\left(k+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+1\\
&\displaystyle=b^{p}\left(k+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1%
+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\end{aligned}}}}
The two numbers
α
𝛼
{\displaystyle{\displaystyle\alpha}}
and
β
𝛽
{\displaystyle{\displaystyle\beta}}
are
β
=
X
1
2
mod
b
p
=
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
𝛽
modulo
superscript
subscript
𝑋
1
2
superscript
𝑏
𝑝
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
{\displaystyle{\displaystyle\beta=X_{1}^{2}{\bmod{b}}^{p}=k+1+\sum_{i=1}^{n}(%
kb+(3k+2))b^{2i-1}}}
α
=
X
1
2
-
β
b
p
=
k
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
𝛼
superscript
subscript
𝑋
1
2
𝛽
superscript
𝑏
𝑝
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
{\displaystyle{\displaystyle\alpha={\frac{X_{1}^{2}-\beta}{b^{p}}}=k+\sum_{i=1%
}^{n}(kb+(3k+2))b^{2i-1}}}
and their sum is
α
+
β
=
(
k
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
=
2
k
+
1
+
∑
i
=
1
n
(
(
2
k
)
b
+
2
(
3
k
+
2
)
)
b
2
i
-
1
=
2
k
+
1
+
∑
i
=
1
n
(
(
2
k
)
b
+
(
6
k
+
4
)
)
b
2
i
-
1
=
2
k
+
1
+
∑
i
=
1
n
(
(
2
k
)
b
+
(
4
k
+
3
)
)
b
2
i
-
1
+
(
2
k
+
1
)
b
2
i
-
1
=
2
k
+
1
+
∑
i
=
1
n
(
(
2
k
+
1
)
b
)
b
2
i
-
1
+
(
2
k
+
1
)
b
2
i
-
1
=
2
k
+
1
+
∑
i
=
1
n
(
2
k
+
1
)
b
2
i
+
(
2
k
+
1
)
b
2
i
-
1
=
2
k
+
1
+
∑
i
=
1
2
n
(
2
k
+
1
)
b
i
=
∑
i
=
0
2
n
(
2
k
+
1
)
b
i
=
(
2
k
+
1
)
∑
i
=
0
2
n
b
i
=
X
1
𝛼
𝛽
absent
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
1
𝑛
2
𝑘
𝑏
2
3
𝑘
2
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
1
𝑛
2
𝑘
𝑏
6
𝑘
4
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
1
𝑛
2
𝑘
𝑏
4
𝑘
3
superscript
𝑏
2
𝑖
1
2
𝑘
1
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
1
𝑛
2
𝑘
1
𝑏
superscript
𝑏
2
𝑖
1
2
𝑘
1
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
1
𝑛
2
𝑘
1
superscript
𝑏
2
𝑖
2
𝑘
1
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
1
2
𝑛
2
𝑘
1
superscript
𝑏
𝑖
missing-subexpression
absent
superscript
subscript
𝑖
0
2
𝑛
2
𝑘
1
superscript
𝑏
𝑖
missing-subexpression
absent
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
𝑏
𝑖
absent
subscript
𝑋
1
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle\alpha+\beta&%
\displaystyle=\left(k+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum_%
{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\\
&\displaystyle=2k+1+\sum_{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\\
&\displaystyle=2k+1+\sum_{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\\
&\displaystyle=2k+1+\sum_{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\\
&\displaystyle=2k+1+\sum_{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\\
&\displaystyle=2k+1+\sum_{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\\
&\displaystyle=2k+1+\sum_{i=1}^{2n}(2k+1)b^{i}\\
&\displaystyle=\sum_{i=0}^{2n}(2k+1)b^{i}\\
&\displaystyle=(2k+1)\sum_{i=0}^{2n}b^{i}&\displaystyle=X_{1}\\
\end{aligned}}}}
Thus,
X
1
subscript
𝑋
1
{\displaystyle{\displaystyle X_{1}}}
is a Kaprekar number.
X
2
=
b
p
+
1
2
=
X
1
+
1
subscript
𝑋
2
superscript
𝑏
𝑝
1
2
subscript
𝑋
1
1
{\displaystyle{\displaystyle X_{2}={\frac{b^{p}+1}{2}}=X_{1}+1}}
is a Kaprekar number for all natural numbers
n
𝑛
{\displaystyle{\displaystyle n}}
.
Proof
Let
X
2
=
b
2
n
+
1
+
1
2
=
b
2
n
+
1
-
1
2
+
1
=
X
1
+
1
subscript
𝑋
2
absent
superscript
𝑏
2
𝑛
1
1
2
missing-subexpression
absent
superscript
𝑏
2
𝑛
1
1
2
1
missing-subexpression
absent
subscript
𝑋
1
1
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle X_{2}&\displaystyle%
={\frac{b^{2n+1}+1}{2}}\\
&\displaystyle={\frac{b^{2n+1}-1}{2}}+1\\
&\displaystyle=X_{1}+1\end{aligned}}}}
Then,
X
2
2
=
(
X
1
+
1
)
2
=
X
1
2
+
2
X
1
+
1
=
X
1
2
+
2
X
1
+
1
=
b
p
(
k
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
b
p
-
1
+
1
=
b
p
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
superscript
subscript
𝑋
2
2
absent
superscript
subscript
𝑋
1
1
2
missing-subexpression
absent
superscript
subscript
𝑋
1
2
2
subscript
𝑋
1
1
missing-subexpression
absent
superscript
subscript
𝑋
1
2
2
subscript
𝑋
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
𝑘
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
superscript
𝑏
𝑝
1
1
missing-subexpression
absent
superscript
𝑏
𝑝
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle X_{2}^{2}&%
\displaystyle=(X_{1}+1)^{2}\\
&\displaystyle=X_{1}^{2}+2X_{1}+1\\
&\displaystyle=X_{1}^{2}+2X_{1}+1\\
&\displaystyle=b^{p}\left(k+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1%
+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+b^{p}-1+1\\
&\displaystyle=b^{p}\left(k+1+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k%
+1+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\end{aligned}}}}
The two numbers
α
𝛼
{\displaystyle{\displaystyle\alpha}}
and
β
𝛽
{\displaystyle{\displaystyle\beta}}
are
β
=
X
2
2
mod
b
p
=
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
𝛽
modulo
superscript
subscript
𝑋
2
2
superscript
𝑏
𝑝
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
{\displaystyle{\displaystyle\beta=X_{2}^{2}{\bmod{b}}^{p}=k+1+\sum_{i=1}^{n}(%
kb+(3k+2))b^{2i-1}}}
α
=
X
2
2
-
β
b
p
=
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
𝛼
superscript
subscript
𝑋
2
2
𝛽
superscript
𝑏
𝑝
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
{\displaystyle{\displaystyle\alpha={\frac{X_{2}^{2}-\beta}{b^{p}}}=k+1+\sum_{i%
=1}^{n}(kb+(3k+2))b^{2i-1}}}
and their sum is
α
+
β
=
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
+
(
k
+
1
+
∑
i
=
1
n
(
k
b
+
(
3
k
+
2
)
)
b
2
i
-
1
)
=
2
k
+
2
+
∑
i
=
1
n
(
(
2
k
)
b
+
2
(
3
k
+
2
)
)
b
2
i
-
1
=
2
k
+
2
+
∑
i
=
1
n
(
(
2
k
)
b
+
(
6
k
+
4
)
)
b
2
i
-
1
=
2
k
+
2
+
∑
i
=
1
n
(
(
2
k
)
b
+
(
4
k
+
3
)
)
b
2
i
-
1
+
(
2
k
+
1
)
b
2
i
-
1
=
2
k
+
2
+
∑
i
=
1
n
(
(
2
k
+
1
)
b
)
b
2
i
-
1
+
(
2
k
+
1
)
b
2
i
-
1
=
2
k
+
2
+
∑
i
=
1
n
(
2
k
+
1
)
b
2
i
+
(
2
k
+
1
)
b
2
i
-
1
=
2
k
+
2
+
∑
i
=
1
2
n
(
2
k
+
1
)
b
i
=
1
+
∑
i
=
0
2
n
(
2
k
+
1
)
b
i
=
1
+
(
2
k
+
1
)
∑
i
=
0
2
n
b
i
=
1
+
X
1
=
X
2
𝛼
𝛽
absent
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
𝑘
1
superscript
subscript
𝑖
1
𝑛
𝑘
𝑏
3
𝑘
2
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
2
superscript
subscript
𝑖
1
𝑛
2
𝑘
𝑏
2
3
𝑘
2
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
2
superscript
subscript
𝑖
1
𝑛
2
𝑘
𝑏
6
𝑘
4
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
2
superscript
subscript
𝑖
1
𝑛
2
𝑘
𝑏
4
𝑘
3
superscript
𝑏
2
𝑖
1
2
𝑘
1
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
2
superscript
subscript
𝑖
1
𝑛
2
𝑘
1
𝑏
superscript
𝑏
2
𝑖
1
2
𝑘
1
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
2
superscript
subscript
𝑖
1
𝑛
2
𝑘
1
superscript
𝑏
2
𝑖
2
𝑘
1
superscript
𝑏
2
𝑖
1
missing-subexpression
absent
2
𝑘
2
superscript
subscript
𝑖
1
2
𝑛
2
𝑘
1
superscript
𝑏
𝑖
missing-subexpression
absent
1
superscript
subscript
𝑖
0
2
𝑛
2
𝑘
1
superscript
𝑏
𝑖
missing-subexpression
absent
1
2
𝑘
1
superscript
subscript
𝑖
0
2
𝑛
superscript
𝑏
𝑖
missing-subexpression
absent
1
subscript
𝑋
1
missing-subexpression
absent
subscript
𝑋
2
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle\alpha+\beta&%
\displaystyle=\left(k+1+\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+%
\sum_{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\\
&\displaystyle=2k+2+\sum_{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\\
&\displaystyle=2k+2+\sum_{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\\
&\displaystyle=2k+2+\sum_{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\\
&\displaystyle=2k+2+\sum_{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\\
&\displaystyle=2k+2+\sum_{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\\
&\displaystyle=2k+2+\sum_{i=1}^{2n}(2k+1)b^{i}\\
&\displaystyle=1+\sum_{i=0}^{2n}(2k+1)b^{i}\\
&\displaystyle=1+(2k+1)\sum_{i=0}^{2n}b^{i}\\
&\displaystyle=1+X_{1}\\
&\displaystyle=X_{2}\end{aligned}}}}
Thus,
X
2
subscript
𝑋
2
{\displaystyle{\displaystyle X_{2}}}
is a Kaprekar number.
b = m 2 k + m + 1 and p = mn + 1
Let
m
𝑚
{\displaystyle{\displaystyle m}}
,
k
𝑘
{\displaystyle{\displaystyle k}}
, and
n
𝑛
{\displaystyle{\displaystyle n}}
be natural numbers, the number base
b
=
m
2
k
+
m
+
1
𝑏
superscript
𝑚
2
𝑘
𝑚
1
{\displaystyle{\displaystyle b=m^{2}k+m+1}}
, and the power
p
=
m
n
+
1
𝑝
𝑚
𝑛
1
{\displaystyle{\displaystyle p=mn+1}}
. Then:
X
1
=
b
p
-
1
m
=
(
m
k
+
1
)
∑
i
=
0
p
-
1
b
i
subscript
𝑋
1
superscript
𝑏
𝑝
1
𝑚
𝑚
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
𝑏
𝑖
{\displaystyle{\displaystyle X_{1}={\frac{b^{p}-1}{m}}=(mk+1)\sum_{i=0}^{p-1}b%
^{i}}}
is a Kaprekar number.
X
2
=
b
p
+
m
-
1
m
=
X
1
+
1
subscript
𝑋
2
superscript
𝑏
𝑝
𝑚
1
𝑚
subscript
𝑋
1
1
{\displaystyle{\displaystyle X_{2}={\frac{b^{p}+m-1}{m}}=X_{1}+1}}
is a Kaprekar number.
b = m 2 k + m + 1 and p = mn + m − 1
Let
m
𝑚
{\displaystyle{\displaystyle m}}
,
k
𝑘
{\displaystyle{\displaystyle k}}
, and
n
𝑛
{\displaystyle{\displaystyle n}}
be natural numbers, the number base
b
=
m
2
k
+
m
+
1
𝑏
superscript
𝑚
2
𝑘
𝑚
1
{\displaystyle{\displaystyle b=m^{2}k+m+1}}
, and the power
p
=
m
n
+
m
-
1
𝑝
𝑚
𝑛
𝑚
1
{\displaystyle{\displaystyle p=mn+m-1}}
. Then:
X
1
=
m
(
b
p
-
1
)
4
=
(
m
-
1
)
(
m
k
+
1
)
∑
i
=
0
p
-
1
b
i
subscript
𝑋
1
𝑚
superscript
𝑏
𝑝
1
4
𝑚
1
𝑚
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
𝑏
𝑖
{\displaystyle{\displaystyle X_{1}={\frac{m(b^{p}-1)}{4}}=(m-1)(mk+1)\sum_{i=0%
}^{p-1}b^{i}}}
is a Kaprekar number.
X
2
=
m
b
p
+
1
4
=
X
3
+
1
subscript
𝑋
2
𝑚
superscript
𝑏
𝑝
1
4
subscript
𝑋
3
1
{\displaystyle{\displaystyle X_{2}={\frac{mb^{p}+1}{4}}=X_{3}+1}}
is a Kaprekar number.
b = m 2 k + m 2 − m + 1 and p = mn + 1
Let
m
𝑚
{\displaystyle{\displaystyle m}}
,
k
𝑘
{\displaystyle{\displaystyle k}}
, and
n
𝑛
{\displaystyle{\displaystyle n}}
be natural numbers, the number base
b
=
m
2
k
+
m
2
-
m
+
1
𝑏
superscript
𝑚
2
𝑘
superscript
𝑚
2
𝑚
1
{\displaystyle{\displaystyle b=m^{2}k+m^{2}-m+1}}
, and the power
p
=
m
n
+
m
-
1
𝑝
𝑚
𝑛
𝑚
1
{\displaystyle{\displaystyle p=mn+m-1}}
. Then:
X
1
=
(
m
-
1
)
(
b
p
-
1
)
m
=
(
m
-
1
)
(
m
k
+
1
)
∑
i
=
0
p
-
1
b
i
subscript
𝑋
1
𝑚
1
superscript
𝑏
𝑝
1
𝑚
𝑚
1
𝑚
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
𝑏
𝑖
{\displaystyle{\displaystyle X_{1}={\frac{(m-1)(b^{p}-1)}{m}}=(m-1)(mk+1)\sum_%
{i=0}^{p-1}b^{i}}}
is a Kaprekar number.
X
2
=
(
m
-
1
)
b
p
+
1
m
=
X
1
+
1
subscript
𝑋
2
𝑚
1
superscript
𝑏
𝑝
1
𝑚
subscript
𝑋
1
1
{\displaystyle{\displaystyle X_{2}={\frac{(m-1)b^{p}+1}{m}}=X_{1}+1}}
is a Kaprekar number.
b = m 2 k + m 2 − m + 1 and p = mn + m − 1
Let
m
𝑚
{\displaystyle{\displaystyle m}}
,
k
𝑘
{\displaystyle{\displaystyle k}}
, and
n
𝑛
{\displaystyle{\displaystyle n}}
be natural numbers, the number base
b
=
m
2
k
+
m
2
-
m
+
1
𝑏
superscript
𝑚
2
𝑘
superscript
𝑚
2
𝑚
1
{\displaystyle{\displaystyle b=m^{2}k+m^{2}-m+1}}
, and the power
p
=
m
n
+
m
-
1
𝑝
𝑚
𝑛
𝑚
1
{\displaystyle{\displaystyle p=mn+m-1}}
. Then:
X
1
=
b
p
-
1
m
=
(
m
k
+
1
)
∑
i
=
0
p
-
1
b
i
subscript
𝑋
1
superscript
𝑏
𝑝
1
𝑚
𝑚
𝑘
1
superscript
subscript
𝑖
0
𝑝
1
superscript
𝑏
𝑖
{\displaystyle{\displaystyle X_{1}={\frac{b^{p}-1}{m}}=(mk+1)\sum_{i=0}^{p-1}b%
^{i}}}
is a Kaprekar number.
X
2
=
b
p
+
m
-
1
m
=
X
3
+
1
subscript
𝑋
2
superscript
𝑏
𝑝
𝑚
1
𝑚
subscript
𝑋
3
1
{\displaystyle{\displaystyle X_{2}={\frac{b^{p}+m-1}{m}}=X_{3}+1}}
is a Kaprekar number.
Kaprekar numbers and cycles of
F
p
,
b
subscript
𝐹
𝑝
𝑏
{\displaystyle{\displaystyle F_{p,b}}}
for specific
p
𝑝
{\displaystyle{\displaystyle p}}
,
b
𝑏
{\displaystyle{\displaystyle b}}
All numbers are in base
b
𝑏
{\displaystyle{\displaystyle b}}
.
Base
b
𝑏
{\displaystyle{\displaystyle b}}
Power
p
𝑝
{\displaystyle{\displaystyle p}}
Nontrivial Kaprekar numbers
n
≠
0
𝑛
0
{\displaystyle{\displaystyle n\neq 0}}
,
n
≠
1
𝑛
1
{\displaystyle{\displaystyle n\neq 1}}
Cycles
2
1
10
∅
{\displaystyle{\displaystyle\varnothing}}
3
1
2, 10
∅
{\displaystyle{\displaystyle\varnothing}}
4
1
3, 10
∅
{\displaystyle{\displaystyle\varnothing}}
5
1
4, 5, 10
∅
{\displaystyle{\displaystyle\varnothing}}
6
1
5, 6, 10
∅
{\displaystyle{\displaystyle\varnothing}}
7
1
3, 4, 6, 10
∅
{\displaystyle{\displaystyle\varnothing}}
8
1
7, 10
2 → 4 → 2
9
1
8, 10
∅
{\displaystyle{\displaystyle\varnothing}}
10
1
9, 10
∅
{\displaystyle{\displaystyle\varnothing}}
11
1
5, 6, A, 10
∅
{\displaystyle{\displaystyle\varnothing}}
12
1
B, 10
∅
{\displaystyle{\displaystyle\varnothing}}
13
1
4, 9, C, 10
∅
{\displaystyle{\displaystyle\varnothing}}
14
1
D, 10
∅
{\displaystyle{\displaystyle\varnothing}}
15
1
7, 8, E, 10
2 → 4 → 2
9 → B → 9
16
1
6, A, F, 10
∅
{\displaystyle{\displaystyle\varnothing}}
2
2
11
∅
{\displaystyle{\displaystyle\varnothing}}
3
2
22, 100
∅
{\displaystyle{\displaystyle\varnothing}}
4
2
12, 22, 33, 100
∅
{\displaystyle{\displaystyle\varnothing}}
5
2
14, 31, 44, 100
∅
{\displaystyle{\displaystyle\varnothing}}
6
2
23, 33, 55, 100
15 → 24 → 15
41 → 50 → 41
7
2
22, 45, 66, 100
∅
{\displaystyle{\displaystyle\varnothing}}
8
2
34, 44, 77, 100
4 → 20 → 4
11 → 22 → 11
45 → 56 → 45
2
3
111, 1000
10 → 100 → 10
3
3
111, 112, 222, 1000
10 → 100 → 10
2
4
110, 1010, 1111, 10000
∅
{\displaystyle{\displaystyle\varnothing}}
3
4
121, 2102, 2222, 10000
∅
{\displaystyle{\displaystyle\varnothing}}
2
5
11111, 100000
10 → 100 → 10000 → 1000 → 10
111 → 10010 → 1110 → 1010 → 111
3
5
11111, 22222, 100000
10 → 100 → 10000 → 1000 → 10
2
6
11100, 100100, 111111, 1000000
100 → 10000 → 100
1001 → 10010 → 1001
100101 → 101110 → 100101
3
6
10220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000
100 → 10000 → 100
122012 → 201212 → 122012
2
7
1111111, 10000000
10 → 100 → 10000 → 10
1000 → 1000000 → 100000 → 1000
100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110
3
7
1111111, 1111112, 2222222, 10000000
10 → 100 → 10000 → 10
1000 → 1000000 → 100000 → 1000
1111121 → 1111211 → 1121111 → 1111121
2
8
1010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000
∅
{\displaystyle{\displaystyle\varnothing}}
3
8
2012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000
∅
{\displaystyle{\displaystyle\varnothing}}
2
9
10010011, 101101101, 111111111, 1000000000
10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10
1000 → 1000000 → 1000
10011010 → 11010010 → 10011010
امتداد للأعداد الصحيحة السالبة
Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.
تمرين في البرمجة
The example below implements the Kaprekar function described in the definition above to search for Kaprekar numbers and cycles in Python .
def kaprekarf ( x : int , p : int , b : int ) -> int :
beta = pow ( x , 2 ) % pow ( b , p )
alpha = ( pow ( x , 2 ) - beta ) // pow ( b , p )
y = alpha + beta
return y
def kaprekarf_cycle ( x : int , p : int , b : int ) -> List [ int ]:
seen = []
while x < pow ( b , p ) and x not in seen :
seen . append ( x )
x = kaprekarf ( x , p , b )
if x > pow ( b , p ):
return []
cycle = []
while x not in cycle :
cycle . append ( x )
x = kaprekarf ( x , p , b )
return cycle
انظر أيضاً
الهامش
المراجع
أعداد متعددات الحدود الأخرى
Possessing a specific set of other numbers
يمكن التعبير عنها بجموع معينة