صورة لفضاء ده سيتر المضاد ذات أبعاد 1+1 مضمـَّن في فضاء مستوي أبعاده 1+2. المحاور t1 و t2 تقع في مستوى التماثل الدوراني، ومحور x1 عمودي على ذلك المستوى. السطح المضمـَّن يحتوي على منحنيات شبيهة بالزمنية مغلقة تدور حول محور x1 ، ولكن هؤلاء يمكن إزالتهم ب"برم (لف)" المضمـَّن (أو بلغة أدق، بنزع الغطاء الشامل universal cover).
The anti de Sitter space of signature (p,q) can then be isometrically embedded in the space with coordinates (x1, ..., xp, t1, ..., tq+1) and the pseudometric
as the sphere
where is a nonzero constant with dimensions of length (the radius of curvature). Note that this is a sphere in the sense that it is a collection of points at constant metric distance from the origin, but visually it is a hyperboloid, as in the image shown.
ده سيتر المضاد كفضاء متجانس ومتماثل
In the same way that the sphere , anti de Sitter with parity aka reflectional symmetry and time reversal symmetry can be seen as a quotient of two groups
whereas AdS without P or C can be seen as
This quotient formulation gives to a homogeneous space structure. The Lie algebra of is given by matrices
These two fulfil . Then explicit matrix computation shows that
. So anti de Sitter is a reductive
homogeneous space, and a non-Riemannian symmetric space.
Ellis, G. F. R.; Hawking, S. W.The large scale structure of space-time. Cambridge university press (1973). (see pages 131-134).
Frances, C: The conformal boundary of anti-de Sitter space-times. AdS/CFT correspondence: Einstein metrics and their conformal boundaries, 205--216, IRMA Lect. Math. Theor. Phys., 8, Eur. Math. Soc., Zürich, 2005.
Matsuda, H. A note on an isometric imbedding of upper half-space into the anti de Sitter space. Hokkaido Mathematical Journal Vol.13 (1984) p. 123-132.
Wolf, Joseph A. Spaces of constant curvature. (1967) p. 334.
This article contains content from Wikimedia licensed under CC BY-SA 4.0. Please comply with the license terms.