پولاريتون

في الفيزياء، الپولاريتون ( polaritons ؛ []pəˈlærᵻtɒnz,_poʊʔ[][1]، هو أشباه جسيمات ناتجة عن اقتران موجات كهرومغناطيسية مع ثنائي قطب كهربائي أو مغناطيسي يحمل إثارة. تعتبر هذه الجسيمات تعبيرا عاما عن الظاهرة الكمية المسماة تنافر مستوي، أو مبدأ تضاد العبور. تعبر الپولاريتونات عن عبور تشتيت ضوء متفاعل مع أي رنين.
They are an expression of level repulsion (quantum phenomenon), also known as the avoided crossing principle. To this extent polaritons can be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. Bosonic quasiparticles are distinct from polarons (fermionic quasiparticle), which is an electron plus an attached phonon cloud.
كلما كانت صورة الپولاريتون صحيحة، كان نموذج الفوتونات في البلورات غير كاف. ومن السمات الرئيسية للبولاريتون التبعية الشديدة لسرعة انتشار الضوء من خلال البلورات على التردد. أما بالنسبة إلى الأكسيتون-بولاريتون فتم العثور على نتاشج تجريبية غنية في عدة نواحي في أكسيد النحاس الأحادي.
تنتظم البولاريتون كشبيه جسيم بوزوني، ولا يجب الخلط بينها وبين البولارون الفرميوني على سبيل المثال إلكترون موجب مرفق بسحابة فونون.
Polaritons violate the weak coupling limit and the associated photons do not propagate freely in crystals. Instead, propagation speed depends strongly on the frequency of the photon.
Significant experimental results on various aspects of exciton-polaritons have been gained in the case of copper(I) oxide.
التاريخ
Oscillations in ionized gases were observed by Lewi Tonks and Irving Langmuir in 1929.[2] Polaritons were first considered theoretically by Kirill Borisovich Tolpygo.[3][4] They were termed light-excitons in Soviet scientific literature. That name was suggested by Solomon Isaakovich Pekar, but the term polariton, proposed by John Hopfield, was adopted.
Coupled states of electromagnetic waves and phonons in ionic crystals and their dispersion relation, now known as phonon polaritons, were obtained by Kirill Tolpygo in 1950[3][4] and independently by Huang Kun in 1951.[5][6] Collective interactions were published by David Pines and David Bohm in 1952, and plasmons were described in silver by Herbert Fröhlich and H. Pelzer in 1955.
R.H Ritchie predicted surface plasmons in 1957, then Ritchie and H.B. Eldridge published experiments and predictions of emitted photons from irradiated metal foils in 1962. Otto first published on surface plasmon-polaritons in 1968.[7] Room-temperature superfluidity of polaritons was observed in 2016 by Giovanni Lerario et al., at CNR NANOTEC Institute of Nanotechnology, using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature.[8]
In 2018, scientists reported the discovery of a new three-photon form of light, which may involve polaritons and could be useful in quantum computers.[9][10]
In 2024 researchers reported ultrastrong coupling of the PEPI layer in a Fabry-Pérot microcavity consisting of two partially reflective mirrors. The PEPI layer is a two-dimensional perovskite made of (PEA)2PbI4 (phenethylammonium lead iodide). Placing a PEPI layer within a Fabry-Pérot microcavity forms polaritons and allows control of exciton-exciton annihilation, increasing solar cell efficiency and ED intensity.[11]
الأنواع
إذن الپولاريتون هو نتيجة اتحاد فوتون مع إثارة مادة. الپولاريتونات الأكثر مناقشة هي الپولاريتون-فوتون الناتج عن اقتران فوتون تحت أحمر مع فونون ضوئي وأكسيتون-پولاريتون الناتج عن اقتران طيف مرئي بأكسيتون وحزام فرعي انتقالي-پولاريتون الناتج عن اقتران فوتون تحت أحمر أو تيراهيرتزي بحزام فرعي انتقالي وپلازوم مساحي-پولاريتون الناتج عن اقتران بلازوم مساحي بضوء (الطول الموجي يعتمد على المادة وهندسته الخاصة به).
انظر أيضاً
المصادر
- ^ "Polariton". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2021-01-17.
- ^ Tonks, Lewi; Langmuir, Irving (1929-02-01). "Oscillations in Ionized Gases". Physical Review. 33 (2): 195–210. Bibcode:1929PhRv...33..195T. doi:10.1103/PhysRev.33.195. PMC 1085653.
- ^ أ ب Tolpygo, K.B. (1950). "Physical properties of a rock salt lattice made up of deformable ions". Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki (J. Exp. Theor. Phys.). 20 (6): 497–509, in Russian.
- ^ أ ب K.B. Tolpygo, "Physical properties of a rock salt lattice made up of deformable ions", Zh. Eks.Teor. Fiz. vol. 20, No. 6, pp. 497–509 (1950), English translation: Ukrainian Journal of Physics, vol. 53, special issue (2008); "Archived copy" (PDF). Archived from the original (PDF) on 2015-12-08. Retrieved 2015-10-15.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^ Huang, Kun (1951). "Lattice vibrations and optical waves in ionic crystals". Nature. 167 (4254): 779–780. Bibcode:1951Natur.167..779H. doi:10.1038/167779b0. S2CID 30926099.
- ^ Huang, Kun (1951). "On the interaction between the radiation field and ionic crystals". Proceedings of the Royal Society of London. 208 (1094): 352–365. Bibcode:1951RSPSA.208..352H. doi:10.1098/rspa.1951.0166. S2CID 97746500.
- ^ Otto, A. (1968). "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection". Z. Phys. 216 (4): 398–410. Bibcode:1968ZPhy..216..398O. doi:10.1007/BF01391532. S2CID 119934323.
- ^ Lerario, Giovanni; Fieramosca, Antonio; Barachati, Fábio; Ballarini, Dario; Daskalakis, Konstantinos S.; Dominici, Lorenzo; De Giorgi, Milena; Maier, Stefan A.; Gigli, Giuseppe; Kéna-Cohen, Stéphane; Sanvitto, Daniele (2017). "Room-temperature superfluidity in a polariton condensate". Nature Physics. 13 (9): 837–841. arXiv:1609.03153. Bibcode:2017NatPh..13..837L. doi:10.1038/nphys4147. S2CID 119298251.
- ^ Hignett, Katherine (16 February 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved 17 February 2018.
- ^ Liang, Qi-Yu; et al. (16 February 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC 6467536. PMID 29449489.
- ^ Daugherty, Justin (2024-08-09). "Stronger Together: Coupling Excitons to Polaritons for Better Solar Cells & Higher Intensity LEDs". CleanTechnica (in الإنجليزية الأمريكية). US Department of Energy National Renewable Energy Laboratory. Retrieved 2024-10-12.
قراءات إضافية
- Baker-Jarvis, J. (2012). "The Interaction of Radio-Frequency Fields With Dielectric Materials at Macroscopic to Mesoscopic Scales" (PDF). Journal of Research of the National Institute of Standards and Technology. National Institute of Science and Technology. 117: 1. doi:10.6028/jres.117.001.
- Fano, U. (1956). "Atomic Theory of Electromagnetic Interactions in Dense Materials". Physical Review. 103 (5): 1202–1218. Bibcode:1956PhRv..103.1202F. doi:10.1103/PhysRev.103.1202.
{{cite journal}}
: Cite has empty unknown parameters:|month=
and|coauthors=
(help) - Hopfield, J. J. (1958). "Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals". Physical Review. 112 (5): 1555–1567. Bibcode:1958PhRv..112.1555H. doi:10.1103/PhysRev.112.1555.
{{cite journal}}
: Cite has empty unknown parameters:|month=
and|coauthors=
(help) - "New type of supercomputer could be based on 'magic dust' combination of light and matter" (in English). University of Cambridge. 25 September 2017. Retrieved 28 September 2017.
{{cite news}}
: CS1 maint: unrecognized language (link)