أولي عاملي Primorial prime

(تم التحويل من Primorial prime)
أولي عاملي
عدد المصطلحات المعروفة51
Conjectured number of termsInfinite
Subsequence ofp# ± 1
أول المصطلحات2, 3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309
أكبر مصطلح معروف7351117! + 1
OEIS indexA228486

In mathematics, a primorial prime is a prime number of the form pn# ± 1, where pn# is the primorial of pn (i.e. the product of the first n primes).[1]

Primality tests show that:

pn# − 1 is prime for n = 2, 3, 5, 6, 13, 24, 66, 68, 167, 287, 310, 352, 564, 590, 620, 849, 1552, 1849, 67132, 85586, 234725, 334023, 435582, 446895, ... (المتتالية A057704 في OEIS). (pn = 3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, 4583, 6569, 13033, 15877, 843301, 1098133, 3267113, 4778027, 6354977, 6533299, ... (المتتالية A006794 في OEIS))
pn# + 1 is prime for n = 0, 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, 1613, 2122, 2647, 2673, 4413, 13494, 31260, 33237, 304723, 365071, 436504, 498865, ... (المتتالية A014545 في OEIS). (pn = 1, 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113, 4328927, 5256037, 6369619, 7351117, ..., (المتتالية A005234 في OEIS))

The first term of the third sequence is 0 because p0# = 1 (we also let p0 = 1, see Prime_number#Primality_of_one, hence the first term of the fourth sequence is 1) is the empty product, and thus p0# + 1 = 2, which is prime. Similarly, the first term of the first sequence is not 1 (hence the first term of the second sequence is also not 2), because p1# = 2, and 2 − 1 = 1 is not prime.

The first few primorial primes are 2, 3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (المتتالية A228486 في OEIS).

اعتبارا من ديسمبر 2024, the largest known prime of the form pn# − 1 is 6533299# − 1 (n = 446,895) with 2,835,864 digits, found by the PrimeGrid project.

اعتبارا من ديسمبر 2024, the largest known prime of the form pn# + 1 is 7351117# + 1 (n = 498,865) with 3,191,401 digits, also found by the PrimeGrid project.

Euclid's proof of the infinitude of the prime numbers is commonly misinterpreted as defining the primorial primes, in the following manner:[2]

Assume that the first n consecutive primes including 2 are the only primes that exist. If either pn# + 1 or pn# − 1 is a primorial prime, it means that there are larger primes than the nth prime (if neither is a prime, that also proves the infinitude of primes, but less directly; each of these two numbers has a remainder of either p − 1 or 1 when divided by any of the first n primes, and hence all its prime factors are larger than pn).

انظر أيضاً

References

  1. ^ Weisstein, Eric. "Primorial Prime". MathWorld. Wolfram. Retrieved 18 March 2015.
  2. ^ Michael Hardy and Catherine Woodgold, "Prime Simplicity", Mathematical Intelligencer, volume 31, number 4, fall 2009, pages 44–52.

انظر أيضاً

  • A. Borning, "Some Results for and " Math. Comput. 26 (1972): 567–570.
  • Chris Caldwell, The Top Twenty: Primorial at The Prime Pages.
  • Harvey Dubner, "Factorial and Primorial Primes." J. Rec. Math. 19 (1987): 197–203.
  • Paulo Ribenboim, The New Book of Prime Number Records. New York: Springer-Verlag (1989): 4.

قالب:Num-stub