تنگستن
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
المظهر | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
أبيض رمادي، لامع![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الخصائص العامة | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الاسم، الرمز، الرقم | التنگستن, W, 74 | |||||||||||||||||||||||||||||||||||||||||||||||||||
النطق | []ˈtʌŋstən[] TUNG-stən; []ˈwʊlfrəm[] WUUL-frəm | |||||||||||||||||||||||||||||||||||||||||||||||||||
تصنيف العنصر | فلز انتقاليا | |||||||||||||||||||||||||||||||||||||||||||||||||||
المجموعة، الدورة، المستوى الفرعي | 6, 6, d | |||||||||||||||||||||||||||||||||||||||||||||||||||
الوزن الذري القياسي | 183.84 | |||||||||||||||||||||||||||||||||||||||||||||||||||
التوزيع الإلكتروني | [Xe] 4f14 5d4 6s2[1] 2, 8, 18, 32, 12, 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
التاريخ | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الاكتشاف | توربرن برگمان (1781) | |||||||||||||||||||||||||||||||||||||||||||||||||||
أول عزل | خوان خوسيه إلهويار وفاوستو إلهويار (1783) | |||||||||||||||||||||||||||||||||||||||||||||||||||
الخصائص الطبيعية | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الطور | صلب | |||||||||||||||||||||||||||||||||||||||||||||||||||
الكثافة (بالقرب من د.ح.غ.) | 19.25 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
الكثافة السائلة عند ن.إ. | 17.6 گ·سم−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
نقطة الانصهار | 3695 ك, 3422 °C, 6192 °F | |||||||||||||||||||||||||||||||||||||||||||||||||||
نقطة الغليان | 5828 ك, 5555 °س, 10031 °ف | |||||||||||||||||||||||||||||||||||||||||||||||||||
النقطة الحرجة | 13892 ك، مپا | |||||||||||||||||||||||||||||||||||||||||||||||||||
حرارة الانصهار | 35.3 كج·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
حرارة التبخر | 806.7 كج·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
السعة الحرارية المولية | 24.27 ج·مول−1·ك−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
ضغط البخار | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
الخصائص الذرية | ||||||||||||||||||||||||||||||||||||||||||||||||||||
حالات الأكسدة | 6, 5, 4, 3, 2, 1, 0, −1, −2 (mildly acidic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||
سالبية كهربية | 2.36 (مقياس پولنگ) | |||||||||||||||||||||||||||||||||||||||||||||||||||
طاقات التأين | الأولى: 770 كج·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
الثانية: 1700 كج·مول−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
نصف القطر الذري | 139 پم | |||||||||||||||||||||||||||||||||||||||||||||||||||
نصف قطر تساهمي | 162±7 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||
متفرقات | ||||||||||||||||||||||||||||||||||||||||||||||||||||
البنية البلورية | body-centered cubic | |||||||||||||||||||||||||||||||||||||||||||||||||||
الترتيب المغناطيسي | paramagnetic[2] | |||||||||||||||||||||||||||||||||||||||||||||||||||
المقاومية الكهربائية | (20 °C) 52.8 nΩ·m | |||||||||||||||||||||||||||||||||||||||||||||||||||
ناقلية حرارية | 173 W·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
التمدد الحراري | (25 °س) 4.5 µm·م−1·ك−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
معامل ينگ | 411 گپا | |||||||||||||||||||||||||||||||||||||||||||||||||||
معامل القص | 161 گپا | |||||||||||||||||||||||||||||||||||||||||||||||||||
معامل الحجم | 310 گپا | |||||||||||||||||||||||||||||||||||||||||||||||||||
نسبة پواسون | 0.28 | |||||||||||||||||||||||||||||||||||||||||||||||||||
صلادة موس | 7.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||
صلادة ڤيكرز | 3430 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||
صلادة برينل | 2570 مپا | |||||||||||||||||||||||||||||||||||||||||||||||||||
رقم تسجيل كاس | 7440-33-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||
أكثر النظائر استقراراً | ||||||||||||||||||||||||||||||||||||||||||||||||||||
المقالة الرئيسية: نظائر التنگستن | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
تنگستن Tungsten عنصر كيميائي يرمز له باللاتينية بالرمز W ،اكتشفه الكيميائي السويدي كارل شيل في عام 1871، وهو عنصر حرارى مهم ويستخدم في صناعة الاسلاك المتوهجة في المصابيح الكهربائية.
العنصر الحر is remarkable for its robustness, especially the fact that it has the highest melting point of all the elements discovered except carbon (which sublimes at normal pressure), melting at 3،422 °C (6،192 °F; 3،695 K). It also has the highest boiling point, at 5،930 °C (10،710 °F; 6،200 K).[3] Its density is 19.25 grams per cubic centimetre,[4] comparable with that of uranium and gold, and much higher (about 1.7 times) than that of lead.[5] Polycrystalline tungsten is an intrinsically brittle[6][7] and hard material (under standard conditions, when uncombined), making it difficult to work. However, pure single-crystalline tungsten is more ductile and can be cut with a hard-steel hacksaw.[8]
Tungsten occurs in many alloys, which have numerous applications, including incandescent light bulb filaments, X-ray tubes, electrodes in gas tungsten arc welding, superalloys, and radiation shielding. Tungsten's hardness and high density make it suitable for military applications in penetrating projectiles. Tungsten compounds are often used as industrial catalysts.
Tungsten is the only metal in the third transition series that is known to occur in biomolecules, being found in a few species of bacteria and archaea. However, tungsten interferes with molybdenum and copper metabolism and is somewhat toxic to most forms of animal life.[9][10]
التاريخ والتسمية
اكتشف التنگستن سنة 1781 على يد الكيميائى السويدى كارل ڤيلهلم شيله (Karl Wilhelm Scheele.) . ويطلق عليه هذا الاسم في البلاد الأنگلوسكسونية واللاتينية، في حين يدعى في ألمانية وفي الدول السلافية ـ وُلْفرام Wolfram ومنها أتى رمزه الكيميائي W؛ وكلمة تنغستن من أصل سويدي مشتقة من كلمتي tung ومعناها ثقيل وsten ومعناها حجر. وقد كان الإنتاج العالمي للتنگستن عام 1982 في حدود 45 ألف طن، وازداد ازدياداً كبيراً مع تنوع تطبيقاته فوصل إلى ما يزيد على 600 ألف طن سنوياً، ثم تراجع الإنتاج وأخذ يتذبذب مع الأسعار ووفرته في المناجم المختلفة ومع إمكان إعادة تدويره. وأهم الدول المنتجة له هي الصين وروسيا والولايات المتحدة وكندا وكوريا وأمريكا الجنوبية.
الخصائص
التنگستن أكثر الفلزات الحرارية توافراً وله أعلى نقطة انصهار من بينها جميعا وهى 3410 ْم. وهو معدن لونه أبيض فضي، رمزه W ووزنه الذري (183.75) وعدده الذري (74). قيمه الاتحادية هي (2، 3، 4، 5، 6) وكثافته (19.3). وهو معدن قاسٍ جداً ومتحمل جداً للحرارة، ينصهر بدرجة 3380ْس ويغلي بدرجة 5700ْس تقريباً، ويحافظ على قساوته ومتانته في درجات الحرارة العالية (حتى الدرجة 2000 تقريباً). وهو ثابت في الهواء الجاف بالدرجة العادية من الحرارة ويتحول إلى ثالث أكسيد التنغستن WO3 في الدرجة الحمراء. وهو لا يتأثر بالماء إلا أنه يتأكسد بالبخار متحولاً إلى ثنائي أكسيد التنگستن WO2. ولا يتأثر من الحموض إلا أن سطحه فقط يتأثر من حمض الآزوت ومن الماء الملكي. ينحل ببطء في البوتاس المصهور، وينحل في مزيج منصهر من نترات الصوديوم والصود الكاوي. يؤثر فيه الفلور في الدرجة العادية من الحرارة، أما الكلور فيؤثر فيه بدرجة 250ْ-300ْس فيحوله إلى سداسي كلوريد التنگستن إذا كان الجو خالياً من الهواء أو إلى أوكسي كلوريد التنغستن بوجود الهواء.
الإستخدامات
وفتائل أسلاكه تستخدم في الغالبية العظمى من المصابيح الكهربائية المتوهجة العادية ويشيع استخدامها كذلك في إضاءة المصانع كإلكترودات في لمبات القوس الكهربى، ويستخدم أيضا في معدات لحام القوس بالتنگستن و الغاز الخامل (TIG or GTAW) كإلكترود معمّر يقاوم الانصهار. أما الاستخدام الأكثر شيوعا للتنگستن فهو مركب كربيد التنگستن الداخل في صناعة لقم الثقب والتشغيل وعدد القطع. ويجد كذلك استخدامات كمزلق و مقاوم الأكسدة في البطانات والفوهات لمقاومة البرى وكطلاء واقى وغير ذلك من طرق الاستخدام، ويوجد التنگستن كذلك في أحبار الطباعة و شاشات الأشعة السينية وكيماويات التصوير وفى تجهيز المنتجات البترولية واختبار مقاومة اللهب للمنسوجات. ويستخدم أيضا لمقاومتة وكثافته العاليتين في تطبيقات تتراوح بين ثقالات في دوارات الطائرات المروحية وكقذائف الأسلحة وبين رؤوس مضارب الجولف.
النظائر
مقالة مفصلة: نظائر التنگستن
مركباته
للالتنگستن ثلاثة أكاسيد هي ثنائي أكسيد التنگستن WO2 ويحضر بإرجاع ثالث أكسيد التنگستن بالهدروجين، وأكسيد التنگستن الأزرق W2O3 وثلاثي أكسيد التنگستن WO3 وهو أهم أكاسيده، وهو مسحوق أصفر لا ينحل في الماء وينحل في القلويات مكوّناً التنگستات.[11]
ومن مركبات التنگستن أيضاً حمض التنگستيك WO4H2 وهو مسحوق أصفر أو أخضر مصفر، غير ذواب في الماء، وينحل ببطء في محاليل القلويات. ومن مركباته أيضاً تنگستات الصوديوم Na2WO4, 2H2O وهو مسحوق أبيض ينحل في الماء ولا ينحل في الغول ويستعمل لتحضير النسج التي لا تحترق والتي لا ينفذ منها الماء.
تحضيره
إن المصدرين الرئيسيين اللذين يعوَّل عليهما في تحضير التنغستن هما الشيليت والولفراميت، ويحضر التنگستن منهما بطرائق متعددة منها أن يسخن الفلز مع كربونات الصوديوم ثم تستخلص تنگستات الصوديوم الناتجة بالماء وترسب بعد ذلك بإضافة كلور الكلسيوم بحالة تنغستات الكلسيوم وهذه الأخيرة تعالج بحمض كلور الماء فينفصل أكسيد التنگستن WO3 الذي يرجع بالهدروجين بدرجة حرارة 1200ْس.
الانتاج والتواجد

يتواجد التنگستن في المعادن ولفراميت (تنگستات الحديد-المنگنيز, FeWO4/MnWO4), شيليت (تنگستات الكالسيوم, CaWO4), فربريت و هوبنريت. وتوجد الرواسب الرئيسية لهذه المعادن في الصين (التي تملك 57% من احتياطيات العالم), روسيا, النمسا والبرتغال, حسب المسح الجيولوجي البريطاني. الفلز يتم انتاجه تجارياً باختزال اكسيد التنگستن باستخدام الهيدروجين أو الكربون.
احتياطات العالم من التنگستن تـُقدر بنحو 7 مليون طن (وزن).
الاحتياطيات
The world's reserves of tungsten are 3,200,000 tonnes; they are mostly located in China (1,800,000 t), Canada (290,000 t),[13] Russia (160,000 t), Vietnam (95,000 t) and Bolivia. As of 2017, China, Vietnam and Russia are the leading suppliers with 79,000, 7,200 and 3,100 tonnes, respectively. Canada had ceased production in late 2015 due to the closure of its sole tungsten mine. Meanwhile, Vietnam had significantly increased its output in the 2010s, owing to the major optimization of its domestic refining operations, and overtook Russia and Bolivia.[14]
China remains the world's leader not only in production, but also in export and consumption of tungsten products. Tungsten production is gradually increasing outside China because of the rising demand. Meanwhile, its supply by China is strictly regulated by the Chinese Government, which fights illegal mining and excessive pollution originating from mining and refining processes.[15]
There is a large deposit of tungsten ore on the edge of Dartmoor in the United Kingdom, which was exploited during World War I and World War II as the Hemerdon Mine. Following increases in tungsten prices, this mine was reactivated in 2014,[16] but ceased activities in 2018.[17]
Within the EU, the Austrian Felbertal scheelite deposit is one of the few producing tungsten mines.[18] Portugal is one of Europe's main tungsten producers, with 121 kt of contained tungsten in mineral concentrates from 1910 to 2020, accounting for roughly 3.3% of the global production.[19]
Tungsten is considered to be a conflict mineral due to the unethical mining practices observed in the Democratic Republic of the Congo.[20][21]
South Korea's Sangdong mine, one of the world's largest tungsten mines with 7,890,000 tonnes of high-grade tungsten reportedly buried, was closed in 1994 due to low profitability but has since re-registered mining rights and is scheduled to resume activities in 2024.[22][23]
الاستخلاص
Tungsten is extracted from its ores in several stages. The ore is eventually converted to tungsten(VI) oxide (WO3), which is heated with hydrogen or carbon to produce powdered tungsten.[24] Because of tungsten's high melting point, it is not commercially feasible to cast tungsten ingots. Instead, powdered tungsten is mixed with small amounts of powdered nickel or other metals, and sintered. During the sintering process, the nickel diffuses into the tungsten, producing an alloy.
Tungsten can also be extracted by hydrogen reduction of WF6:
- WF6 + 3 H2 → W + 6 HF
or pyrolytic decomposition:[25]
- WF6 → W + 3 F2 (ΔHr = +)
Tungsten is not traded as a futures contract and cannot be tracked on exchanges like the London Metal Exchange. The tungsten industry often uses independent pricing references such as Argus Media or Metal Bulletin as a basis for contracts.[26] The prices are usually quoted for tungsten concentrate or WO3.[14]
التطبيقات

Approximately half of the tungsten is consumed for the production of hard materials – namely tungsten carbide – with the remaining major use being in alloys and steels. Less than 10% is used in other chemical compounds.[27] Because of the high ductile-brittle transition temperature of tungsten, its products are conventionally manufactured through powder metallurgy, spark plasma sintering, chemical vapor deposition, hot isostatic pressing, and thermoplastic routes. A more flexible manufacturing alternative is selective laser melting, which is a form of 3D printing and allows creating complex three-dimensional shapes.[28]
Industrial
Tungsten is mainly used in the production of hard materials based on tungsten carbide (WC), one of the hardest carbides. WC is an efficient electrical conductor, but W2C is less so. WC is used to make wear-resistant abrasives, and "carbide" cutting tools such as knives, drills, circular saws, dies, milling and turning tools used by the metalworking, woodworking, mining, petroleum and construction industries.[5] Carbide tooling is actually a ceramic/metal composite, where metallic cobalt acts as a binding (matrix) material to hold the WC particles in place. This type of industrial use accounts for about 60% of current tungsten consumption.[29]
The jewelry industry makes rings of sintered tungsten carbide, tungsten carbide/metal composites, and also metallic tungsten.[30] WC/metal composite rings use nickel as the metal matrix in place of cobalt because it takes a higher luster when polished. Sometimes manufacturers or retailers refer to tungsten carbide as a metal, but it is a ceramic.[31] Because of tungsten carbide's hardness, rings made of this material are extremely abrasion resistant, and will hold a burnished finish longer than rings made of metallic tungsten. Tungsten carbide rings are brittle, however, and may crack under a sharp blow.[32]
السبائك
The hardness and heat resistance of tungsten can contribute to useful alloys. A good example is high-speed steel, which can contain as much as 18% tungsten.[33] Tungsten's high melting point makes tungsten a good material for applications like rocket nozzles, for example in the UGM-27 Polaris submarine-launched ballistic missile.[34] Tungsten alloys are used in a wide range of applications, including the aerospace and automotive industries and radiation shielding.[35] Superalloys containing tungsten, such as Hastelloy and Stellite, are used in turbine blades and wear-resistant parts and coatings.
Tungsten's heat resistance makes it useful in arc welding applications when combined with another highly-conductive metal such as silver or copper. The silver or copper provides the necessary conductivity and the tungsten allows the welding rod to withstand the high temperatures of the arc welding environment.[36]
Permanent magnets
Quenched (martensitic) tungsten steel (approx. 5.5% to 7.0% W with 0.5% to 0.7% C) was used for making hard permanent magnets, due to its high remanence and coercivity, as noted by John Hopkinson (1849–1898) as early as 1886. The magnetic properties of a metal or an alloy are very sensitive to microstructure. For example, while the element tungsten is not ferromagnetic (but iron is), when it is present in steel in these proportions, it stabilizes the martensite phase, which has greater ferromagnetism than the ferrite (iron) phase due to its greater resistance to magnetic domain wall motion.
Military
Tungsten, usually alloyed with nickel, iron, or cobalt to form heavy alloys, is used in kinetic energy penetrators as an alternative to depleted uranium, in applications where uranium's radioactivity is problematic even in depleted form, or where uranium's additional pyrophoric properties are not desired (for example, in ordinary small arms bullets designed to penetrate body armor). Similarly, tungsten alloys have also been used in shells, grenades, and missiles, to create supersonic shrapnel. Germany used tungsten during World War II to produce shells for anti-tank gun designs using the Gerlich squeeze bore principle to achieve very high muzzle velocity and enhanced armor penetration from comparatively small caliber and light weight field artillery. The weapons were highly effective but a shortage of tungsten used in the shell core, caused in part by the Wolfram Crisis, limited their use.[بحاجة لمصدر]
Tungsten has also been used in dense inert metal explosives, which use it as dense powder to reduce collateral damage while increasing the lethality of explosives within a small radius.[37]
التطبيقات الكيميائية
Tungsten(IV) sulfide is a high temperature lubricant and is a component of catalysts for hydrodesulfurization.[38] MoS2 is more commonly used for such applications.[39]
Tungsten oxides are used in ceramic glazes and calcium/magnesium tungstates are used widely in fluorescent lighting. Crystal tungstates are used as scintillation detectors in nuclear physics and nuclear medicine. Other salts that contain tungsten are used in the chemical and tanning industries.[40] Tungsten oxide (WO3) is incorporated into selective catalytic reduction (SCR) catalysts found in coal-fired power plants. These catalysts convert nitrogen oxides (NOx) to nitrogen (N2) and water (H2O) using ammonia (NH3). The tungsten oxide helps with the physical strength of the catalyst and extends catalyst life.[41] Tungsten containing catalysts are promising for epoxidation,[42] oxidation,[43] and hydrogenolysis reactions.[44] Tungsten heteropoly acids are key component of multifunctional catalysts.[45] Tungstates can be used as photocatalyst,[46] while the tungsten sulfide as electrocatalyst.[47]
استخدامات متخصصة
Applications requiring its high density include weights, counterweights, ballast keels for yachts, tail ballast for commercial aircraft, rotor weights for civil and military helicopters, and as ballast in race cars for NASCAR and Formula One.[48] Being slightly less than twice the density, tungsten is seen as an alternative (albeit more expensive) to lead fishing sinkers. Depleted uranium is also used for these purposes, due to similarly high density. Seventy-five-kg blocks of tungsten were used as "cruise balance mass devices" on the entry vehicle portion of the 2012 Mars Science Laboratory spacecraft. It is an ideal material to use as a dolly for riveting, where the mass necessary for good results can be achieved in a compact bar. High-density alloys of tungsten with nickel, copper or iron are used in high-quality darts[49] (to allow for a smaller diameter and thus tighter groupings) or for artificial flies (tungsten beads allow the fly to sink rapidly). Tungsten is also used as a heavy bolt to lower the rate of fire of the SWD M11/9 sub-machine gun from 1300 RPM to 700 RPM. Some string instrument strings incorporates tungsten.[50][51] Tungsten is used as an absorber on the electron telescope on the Cosmic Ray System of the two Voyager spacecraft.[52]
Gold substitution
Its density, similar to that of gold, allows tungsten to be used in jewelry as an alternative to gold or platinum.[8][53] Metallic tungsten is hypoallergenic, and is harder than gold alloys (though not as hard as tungsten carbide), making it useful for rings that will resist scratching, especially in designs with a brushed finish.
Because the density is so similar to that of gold (tungsten is only 0.36% less dense), and its price of the order of one-thousandth, tungsten can also be used in counterfeiting of gold bars, such as by plating a tungsten bar with gold,[54][55][56] which has been observed since the 1980s,[57] or taking an existing gold bar, drilling holes, and replacing the removed gold with tungsten rods.[58] The densities are not exactly the same, and other properties of gold and tungsten differ, but gold-plated tungsten will pass superficial tests.[54]
Gold-plated tungsten is available commercially from China (the main source of tungsten), both in jewelry and as bars.[59]
الالكترونيات
Because it retains its strength at high temperatures and has a high melting point, elemental tungsten is used in many high-temperature applications,[60] such as incandescent light bulb, cathode-ray tube, and vacuum tube filaments, heating elements, and rocket engine nozzles.[8] Its high melting point also makes tungsten suitable for aerospace and high-temperature uses such as electrical, heating, and welding applications, notably in the gas tungsten arc welding process (also called tungsten inert gas (TIG) welding).[61]
Because of its conductive properties and relative chemical inertness, tungsten is also used in electrodes, and in the emitter tips in electron-beam instruments that use field emission guns, such as electron microscopes. In electronics, tungsten is used as an interconnect material in integrated circuits, between the silicon dioxide dielectric material and the transistors. It is used in metallic films, which replace the wiring used in conventional electronics with a coat of tungsten (or molybdenum) on silicon.[25]
The electronic structure of tungsten makes it one of the main sources for X-ray targets,[62][63] and also for shielding from high-energy radiations (such as in the radiopharmaceutical industry for shielding radioactive samples of FDG). It is also used in gamma imaging as a material from which coded apertures are made, due to its excellent shielding properties. Tungsten powder is used as a filler material in plastic composites, which are used as a nontoxic substitute for lead in bullets, shot, and radiation shields. Since this element's thermal expansion is similar to borosilicate glass, it is used for making glass-to-metal seals.[40] In addition to its high melting point, when tungsten is doped with potassium, it leads to an increased shape stability (compared with non-doped tungsten). This ensures that the filament does not sag, and no undesired changes occur.[64]
Tungsten is used in producing vibration motors, also known as mobile vibrators.[65] These motors are integral components that provide tactile feedback to users, alerting them to incoming calls, messages, and notifications.[66] Tungsten's high density, hardness, and wear resistance property helps to endure the high-speed rotational vibrations these motors generate.[67][68]
Nanowires
Through top-down nanofabrication processes, tungsten nanowires have been fabricated and studied since 2002.[69] Due to a particularly high surface to volume ratio, the formation of a surface oxide layer and the single crystal nature of such material, the mechanical properties differ fundamentally from those of bulk tungsten.[70] Such tungsten nanowires have potential applications in nanoelectronics and importantly as pH probes and gas sensors.[71] In similarity to silicon nanowires, tungsten nanowires are frequently produced from a bulk tungsten precursor followed by a thermal oxidation step to control morphology in terms of length and aspect ratio.[72] Using the Deal–Grove model it is possible to predict the oxidation kinetics of nanowires fabricated through such thermal oxidation processing.[73]
Fusion power
Due to its high melting point and good erosion resistance, tungsten is a lead candidate for the most exposed sections of the plasma-facing inner wall of nuclear fusion reactors. Tungsten, as a plasma-facing component material, features exceptionally low tritium retention through co-deposition and implantation, which enhances safety by minimizing radioactive inventory, improves fuel efficiency by making more fuel available for fusion reactions, and supports operational continuity by reducing the need for frequent fuel removal from surfaces.[74] It will be used as the plasma-facing material of the divertor in the ITER reactor,[75] and is currently in use in the JET test reactor.
الدور الحيوي
Tungsten, at atomic number Z = 74, is the heaviest element known to be biologically functional. It is used by some bacteria and archaea,[76] but not in eukaryotes. For example, enzymes called oxidoreductases use tungsten similarly to molybdenum by using it in a tungsten-pterin complex with molybdopterin (molybdopterin, despite its name, does not contain molybdenum, but may complex with either molybdenum or tungsten in use by living organisms). Tungsten-using enzymes typically reduce carboxylic acids to aldehydes.[77] The tungsten oxidoreductases may also catalyse oxidations. The first tungsten-requiring enzyme to be discovered also requires selenium, and in this case the tungsten-selenium pair may function analogously to the molybdenum-sulfur pairing of some molybdopterin-requiring enzymes.[78] One of the enzymes in the oxidoreductase family which sometimes employ tungsten (bacterial formate dehydrogenase H) is known to use a selenium-molybdenum version of molybdopterin.[79] Acetylene hydratase is an unusual metalloenzyme in that it catalyzes a hydration reaction. Two reaction mechanisms have been proposed, in one of which there is a direct interaction between the tungsten atom and the C≡C triple bond.[80] Although a tungsten-containing xanthine dehydrogenase from bacteria has been found to contain tungsten-molydopterin and also non-protein bound selenium, a tungsten-selenium molybdopterin complex has not been definitively described.[81]
In soil, tungsten metal oxidizes to the tungstate anion. It can be selectively or non-selectively imported by some prokaryotic organisms and may substitute for molybdate in certain enzymes. Its effect on the action of these enzymes is in some cases inhibitory and in others positive.[82] The soil's chemistry determines how the tungsten polymerizes; alkaline soils cause monomeric tungstates; acidic soils cause polymeric tungstates.[83]
Sodium tungstate and lead have been studied for their effect on earthworms. Lead was found to be lethal at low levels and sodium tungstate was much less toxic, but the tungstate completely inhibited their reproductive ability.[84]
Tungsten has been studied as a biological copper metabolic antagonist, in a role similar to the action of molybdenum. It has been found that tetrathiotungstate salts may be used as biological copper chelation chemicals, similar to the tetrathiomolybdates.[85]
في العتائق
Tungsten is essential for some archaea. The following tungsten-utilizing enzymes are known:
- Aldehyde ferredoxin oxidoreductase (AOR) in Thermococcus strain ES-1
- Formaldehyde ferredoxin oxidoreductase (FOR) in Thermococcus litoralis
- Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) in Pyrococcus furiosus
A wtp system is known to selectively transport tungsten in archaea:
- WtpA is tungsten-binding protein of ABC family of transporters
- WtpB is a permease
- WtpC is ATPase[86]
عوامل الصحة
Because tungsten is a rare metal[87] and its compounds are generally inert, the effects of tungsten on the environment are limited.[88] The abundance of tungsten in the Earth's crust is thought to be about 1.5 parts per million. It is the 58th most abundant element found on Earth.[89]
It was at first believed to be relatively inert and an only slightly toxic metal, but beginning in the year 2000, the risk presented by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments.[90][91] The median lethal dose LD50 depends strongly on the animal and the method of administration and varies between 59 mg/kg (intravenous, rabbits)[92][93] and 5000 mg/kg (tungsten metal powder, intraperitoneal, rats).[94][95]
People can be exposed to tungsten in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 5 mg/m3 over an 8-hour workday and a short term limit of 10 mg/m3.[96]
احتياطات السلامة
يقاوم التنگستن معدن المولبدينيوم استنشاق هذا المعدن يسبب استثارة للرئة والغشاء المخاطى. استثارة العين يسفر عنها احمرار ودموع.التهاب الجلد: الاحمرار والهرش ووجود الندبات.التعرض المتكرر أو على المدى الطويل: لا يوجد هناك ما يفيد تدهور أياً من الحالات الطبية المرضية. لا توجد هناك أية نتائج تشير إلى حدوث تسمم التنجستين من الأطعمة.[97]
مزاعم ببراءة الإختراع
انظر أيضاً
- Field emission gun
- أكسيد التنگستن
- List of chemical elements name etymologies
- List of chemical elements naming controversies
المصادر
- ^ Why does Tungsten not 'Kick' up an electron from the s sublevel ?. Retrieved on 2008-06-15.
- ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
- ^ Zhang Y; Evans JRG and Zhang S (January 2011). "Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks". J. Chem. Eng. Data. 56 (2): 328–337. doi:10.1021/je1011086.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "This Chinese Company Proudly Sells Tungsten-Filled Gold Bars". Business Insider. 2012.
- ^ أ ب Daintith, John (2005). Facts on File Dictionary of Chemistry (4th ed.). New York: Checkmark Books. ISBN 978-0-8160-5649-1.
- ^ Lassner, Erik; Schubert, Wolf-Dieter (1999). "low temperature brittleness". Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. pp. 20–21. ISBN 978-0-306-45053-2.
- ^ Gludovatz, B.; Wurster, S.; Weingärtner, T.; Hoffmann, A.; Pippan, R. (2011). "Influence of impurities on the fracture behavior of tungsten". Philosophical Magazine (Submitted manuscript). 91 (22): 3006–3020. Bibcode:2011PMag...91.3006G. doi:10.1080/14786435.2011.558861. S2CID 137145004.
- ^ أ ب ت Stwertka, Albert (2002). A Guide to the elements (2nd ed.). New York: Oxford University Press. ISBN 978-0-19-515026-1.
- ^ McMaster, J. & Enemark, John H. (1998). "The active sites of molybdenum- and tungsten-containing enzymes". Current Opinion in Chemical Biology. 2 (2): 201–207. doi:10.1016/S1367-5931(98)80061-6. PMID 9667924.
- ^ Hille, Russ (2002). "Molybdenum and tungsten in biology". Trends in Biochemical Sciences. 27 (7): 360–367. doi:10.1016/S0968-0004(02)02107-2. PMID 12114025.
- ^ راتب محملجي. "التنغستِن". الموسوعة العربية.
- ^ "supply-circularity". itia.info.
- ^ Tungsten. Mineral Commodity Summaries. USGS (2017)
- ^ أ ب Shedd, Kim B. (December 2018) Tungsten. 2016 Minerals Yearbook. USGS
- ^ Tungsten. Mineral Commodity Summaries. USGS (2018)
- ^ "Work starts on £130m Devon tungsten mine". BBC News. 9 June 2014. Archived from the original on 2014-12-05.
- ^ "How Hemerdon mine lost £100m in just three years". Plymouth Herald. 12 October 2018. Retrieved 24 January 2019.
- ^ Altenberger, Florian; Raith, Johann G.; Weilbold, Julia; Auer, Christian; Knoll, Tanja; Paulick, Holger; Schedl, Albert; Aupers, Karsten; Schmidt, Steffen; Neinavaie, Hassan (2021-05-07). "Casting new light on tungsten deposits in the Eastern Alps". Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (in الإنجليزية). 172 (1): 63–72. Bibcode:2021ZDGG..172...63A. doi:10.1127/zdgg/2021/0262. S2CID 233912162.
- ^ Mateus, António; Lopes, Catarina; Martins, Luís; Gonçalves, Mário Abel (June 2021). "Current and Foreseen Tungsten Production in Portugal, and the Need of Safeguarding the Access to Relevant Known Resources". Resources (in الإنجليزية). 10 (6): 64. Bibcode:2021Resou..10...64M. doi:10.3390/resources10060064. hdl:10451/53675. ISSN 2079-9276.
- ^ Kristof, Nicholas D. (2010-06-27). "Death by Gadget". The New York Times. Archived from the original on 2016-08-31.
- ^ "The Genocide Behind Your Smart Phone". The Daily Beast. July 16, 2010. Archived from the original on 2011-11-17.
- ^ "Project Technical Reports – Sangdong Reserves/Resources NI 43-101" (PDF). Almonty Industries. 31 July 2016. Archived from the original (PDF) on 12 September 2024. Retrieved 12 September 2024.
- ^ "Almonty advances Sangdong tungsten mine in South Korea". The Northern Miner. 2 August 2023. Archived from the original on 28 April 2024. Retrieved 28 April 2024.
- ^ Saunders, Nigel (2004). Tungsten and the Elements of Groups 3 to 7 (The Periodic Table). Chicago, Illinois: Heinemann Library. ISBN 978-1-4034-3518-7.
- ^ أ ب Schey, John A. (1987). Introduction to Manufacturing Processes (2nd ed.). McGraw-Hill, Inc.
- ^ "Tungsten Pricing". International Tungsten Industry Association. Retrieved 18 June 2020.
- ^ Trasorras, Juan R. L.; Wolfe, Thomas A.; Knabl, Wolfram; Venezia, Carmen; Lemus, Ranulfo; Lassner, Erik; Schubert, Wolf-Dieter; Lüderitz, Eberhard; Wolf, Hans-Uwe (2016). "Tungsten, Tungsten Alloys, and Tungsten Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a27_229.pub2. ISBN 9783527303854.
- ^ Tan, C. (2018). "Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties". Sci. Technol. Adv. Mater. 19 (1): 370–380. Bibcode:2018STAdM..19..370T. doi:10.1080/14686996.2018.1455154. PMC 5917440. PMID 29707073.
- ^ Don Law-West; Louis Perron. "Tungsten". The Canadian Encyclopaedia. Retrieved 2020-07-18.
- ^ Tungsten: The Element, History, Uses and Wedding Bands.tungstenworld.com
- ^ de Laubenfels, Blair; Weber, Christy; Bamberg, Kim (2009). Knack Planning Your Wedding: A Step-by-Step Guide to Creating Your Perfect Day. Globe Pequot. pp. 35–. ISBN 978-1-59921-397-2.
- ^ Schultz, Ken (2009). Ken Schultz's Essentials of Fishing: The Only Guide You Need to Catch Freshwater and Saltwater Fish. John Wiley and Sons. pp. 138–. ISBN 978-0-470-44431-3.
- ^ "Tungsten Applications – Steel". Azom. 2000–2008. Archived from the original on 2008-08-15. Retrieved 2008-06-18.
- ^ Ramakrishnan, P. (2007). "Powder metallurgy for Aerospace Applications". Powder Metallurgy: Processing for automotive, electrical / electronic, and engineering industry. New Age International. p. 38. ISBN 978-81-224-2030-2.
- ^ "Tungsten Applications". wolfmet.com. Archived from the original on 2013-09-01.
- ^ "TIG Torches & TIG Torch Parts". AES Industrial Supplies Limited (in الإنجليزية البريطانية). Retrieved 2021-05-06.
- ^ Dense Inert Metal Explosive (DIME). Defense-update.com. Retrieved on 2011-08-07.
- ^ Delmon, Bernard & Froment, Gilbert F. (1999). Hydrotreatment and hydrocracking of oil fractions: proceedings of the 2nd international symposium, 7th European workshop, Antwerpen, Belgium, November 14–17, 1999. Elsevier. pp. 351–. ISBN 978-0-444-50214-8. Retrieved 18 December 2011.
- ^ Mang, Theo & Dresel, Wilfried (2007). Lubricants and Lubrication. John Wiley & Sons. pp. 695–. ISBN 978-3-527-61033-4.
- ^ أ ب خطأ استشهاد: وسم
<ref>
غير صحيح؛ لا نص تم توفيره للمراجع المسماةdesu
- ^ Spivey, James J. (2002). Catalysis. Royal Society of Chemistry. pp. 239–. ISBN 978-0-85404-224-1. Retrieved 18 December 2011.
- ^ Lewandowski, Grzegorz; Kujbida, Marcin; Wróblewska, Agnieszka (1 April 2021). "Epoxidation of 1,5,9-cyclododecatriene with hydrogen peroxide under phase-transfer catalysis conditions: influence of selected parameters on the course of epoxidation". Reaction Kinetics, Mechanisms and Catalysis (in الإنجليزية). 132 (2): 983–1001. doi:10.1007/s11144-021-01960-7. ISSN 1878-5204.
- ^ Kinetic studies of propane oxidation on Mo and V based mixed oxide catalysts. 2011. pp. 165–170.
- ^ Liu, Lujie; Asano, Takehiro; Nakagawa, Yoshinao; Gu, Minyan; Li, Congcong; Tamura, Masazumi; Tomishige, Keiichi (5 September 2021). "Structure and performance relationship of silica-supported platinum–tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol". Applied Catalysis B: Environmental. 292 120164. Bibcode:2021AppCB.29220164L. doi:10.1016/j.apcatb.2021.120164.
- ^ Kornas, A.; Śliwa, M.; Ruggiero-Mikołajczyk, M.; Samson, K.; Podobiński, J.; Karcz, R.; Duraczyńska, D.; Rutkowska-Zbik, D.; Grabowski, R. (1 June 2020). "Direct hydrogenation of CO2 to dimethyl ether (DME) over hybrid catalysts containing CuO/ZrO2 as a metallic function and heteropolyacids as an acidic function". Reaction Kinetics, Mechanisms and Catalysis (in الإنجليزية). 130 (1): 179–194. doi:10.1007/s11144-020-01778-9. ISSN 1878-5204.
- ^ Campos, Willison E. O.; Lopes, Anna S. C.; Monteiro, Waldinei R.; Filho, Geraldo N. R.; Nobre, Francisco X.; Luz, Patrícia T. S.; Nascimento, Luís A. S.; Costa, Carlos E. F.; Monteiro, Wesley F.; Vieira, Michele O.; Zamian, José R. (1 October 2020). "Layered double hydroxides as heterostructure LDH@Bi2WO6 oriented toward visible-light-driven applications: synthesis, characterization, and its photocatalytic properties". Reaction Kinetics, Mechanisms and Catalysis (in الإنجليزية). 131 (1): 505–524. doi:10.1007/s11144-020-01830-8. ISSN 1878-5204. S2CID 220948033.
- ^ Maslana, K.; Wenelska, K.; Biegun, M.; Mijowska, E. (5 June 2020). "High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions". Applied Catalysis B: Environmental. 266 118575. Bibcode:2020AppCB.26618575M. doi:10.1016/j.apcatb.2019.118575. S2CID 213246090.
- ^ "F1 Technique: The secrets of ballast in a Formula 1 car". Auto123.com. 2013-12-25. Retrieved 2019-02-03.
- ^ Turrell, Kerry (2004). Tungsten. Marshall Cavendish. p. 24. ISBN 978-0-7614-1548-0.
- ^ Prieto, Carlos (2011-02-01). The Adventures of a Cello. Austin: University of Texas Press. p. 10. ISBN 978-0-292-72393-1.
- ^ Pickering N. C. (1991). The Bowed String: Observations on the Design, Manufacture, Testing and Performance of Strings for Violins, Violas and Cellos. Mattituck, New York: Amereon. pp. 5–6, 17.
- ^ "CRS Instruments". NASA. Archived from the original on 2017-02-01.
- ^ Hesse, Rayner W. (2007). "tungsten". Jewelrymaking through history: an encyclopedia. Westport, Conn.: Greenwood Press. pp. 190–192. ISBN 978-0-313-33507-5.
- ^ أ ب Gray, Theo (March 14, 2008). "How to Make Convincing Fake-Gold Bars". Popular Science. Archived from the original on December 29, 2014. Retrieved 2008-06-18.
- ^ "Zinc Dimes, Tungsten Gold & Lost Respect Archived 2011-10-08 at the Wayback Machine", Jim Willie, Nov 18 2009
- ^ "Largest Private Refinery Discovers Gold-Plated Tungsten Bar – Coin Update". news.coinupdate.com.
- ^ "Austrians Seize False Gold Tied to London Bullion Theft". The New York Times. Reuters. 1983-12-22. Archived from the original on 2012-03-27. Retrieved 2012-03-25.
- ^ Tungsten filled Gold bars Archived 2012-03-26 at the Wayback Machine, ABC Bullion, Thursday, March 22, 2012
- ^ Tungsten Alloy for Gold Substitution Archived 2012-03-22 at the Wayback Machine, China Tungsten
- ^ DeGarmo, E. Paul (1979). Materials and Processes in Manufacturing (5th ed.). New York: MacMillan Publishing.
- ^ Cary, Howard B.; Helzer, Scott (2005). Modern welding Technology (6th ed.). Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 978-0-13-113029-6.
- ^ Curry, Thomas S.; Dowdey, James E.; Murry, Robert C.; Christensen, Edward E. (1990-08-01). Christensen's physics of diagnostic radiology. Lippincott Williams & Wilkins. pp. 29–35. ISBN 978-0-8121-1310-5. Archived from the original on 2017-11-11.
- ^ Hasz, Wayne Charles et al. (August 6, 2002) "X-ray target" U.S. Patent 6٬428٬904
- ^ "Non-Sag Doped Tungsten – Union City Filament". Union City Filament. Archived from the original on 2017-05-01. Retrieved 2017-04-28.
- ^ Trento, Chin (Mar 8, 2024). "How Much Gold Can an iPhone Refine?". Stanford Advanced Materials. Retrieved June 26, 2024.
- ^ {{{1}}} patent {{{2}}}
- ^ Nissen, Nils F.; Reinhold, Julia (2021). "Recyclability of Tungsten, Tantalum and Neodymium from Smartphones". In Inoue, M.; Fukushige, S. (eds.). EcoDesign and Sustainability I: Products, Services, and Business Models. Springer Singapore. pp. 365–381. ISBN 978-981-15-6779-7.
- ^ Micallef, Christian; Zhuk, Yuri (2020). "Recent Progress in Precision Machining and Surface Finishing of Tungsten Carbide Hard Composite Coatings". Coatings. 10 (8): 731. doi:10.3390/coatings10080731.
- ^ Li Yadong (2002). "From Surfactant–Inorganic Mesostructures to Tungsten Nanowires". Angewandte Chemie. 114 (2): 333–335. Bibcode:2002AngCh.114..343L. doi:10.1002/1521-3773(20020118)41:2<333::AID-ANIE333>3.0.CO;2-5. PMID 12491423.
- ^ Volker Cimalla (2008). "Nanomechanics of single crystalline tungsten nanowires". Journal of Nanomaterials. 2008 638947: 1–9. doi:10.1155/2008/638947. hdl:11858/00-001M-0000-0019-4CC6-3.
- ^ CNR Rao (2006). "High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires". Journal of Materials Chemistry.
- ^ Liu, M.; Peng, J.; et al. (2016). "Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires". Theoretical and Applied Mechanics Letters. 6 (5): 195–199. arXiv:1911.08908. Bibcode:2016TAML....6..195L. doi:10.1016/j.taml.2016.08.002.
- ^ JTL Thong (2010). "Thermal oxidation of polycrystalline tungsten nanowire" (PDF). Journal of Applied Physics. 108 (9) 094312: 094312–094312–6. Bibcode:2010JAP...108i4312Y. doi:10.1063/1.3504248. Archived (PDF) from the original on 2017-03-15.
- ^ Roth, Joachim; Tsitrone, E.; Loarte, A.; Loarer, Th.; Counsell, G.; Neu, R.; Philipps, V.; Brezinsek, S.; Lehnen, M.; Coad, P.; Grisolia, Ch.; Schmid, K.; Krieger, K.; Kallenbach, A.; Lipschultz, B.; Doerner, R.; Causey, R.; Alimov, V.; Shu, W.; Ogorodnikova, O.; Kirschner, A.; Federici, G.; Kukushkin, A. (2009). "Recent analysis of key plasma wall interactions issues for ITER". Journal of Nuclear Materials. 390–391: 1–9. Bibcode:2009JNuM..390....1R. doi:10.1016/j.jnucmat.2009.01.037. hdl:11858/00-001M-0000-0026-F442-2. ISSN 0022-3115.
- ^ Pitts, R. A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Lisgo, S.; Kukushkin, A. S.; Loarte, A.; Merola, M.; Sashala Naik, A.; Mitteau, R. (2013-07-01). "A full tungsten divertor for ITER: Physics issues and design status". Journal of Nuclear Materials. Proceedings of the 20th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices (in الإنجليزية). 438: S48–S56. Bibcode:2013JNuM..438S..48P. doi:10.1016/j.jnucmat.2013.01.008. ISSN 0022-3115.
- ^ Johnson JL, Rajagopalan KV, Mukund S, Adams MW (5 March 1993). "Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea". Journal of Biological Chemistry. 268 (7): 4848–52. doi:10.1016/S0021-9258(18)53474-8. PMID 8444863.
- ^ Lassner, Erik (1999). Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds. Springer. pp. 409–411. ISBN 978-0-306-45053-2.
- ^ Stiefel, E. I. (1998). "Transition metal sulfur chemistry and its relevance to molybdenum and tungsten enzymes" (PDF). Pure Appl. Chem. 70 (4): 889–896. CiteSeerX 10.1.1.614.5712. doi:10.1351/pac199870040889. S2CID 98647064. Archived (PDF) from the original on 2008-12-03.
- ^ Khangulov, S. V.; et al. (1998). "Selenium-Containing Formate Dehydrogenase H from Escherichia coli: A Molybdopterin Enzyme That Catalyzes Formate Oxidation without Oxygen Transfer". Biochemistry. 37 (10): 3518–3528. doi:10.1021/bi972177k. PMID 9521673.
- ^ ten Brink, Felix (2014). "Chapter 2. Living on acetylene. A Primordial Energy Source". In Peter M.H. Kroneck; Martha E. Sosa Torres (eds.). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. Springer. pp. 15–35. doi:10.1007/978-94-017-9269-1_2. ISBN 978-94-017-9268-4. PMID 25416389.
- ^ Schrader, Thomas; Rienhofer, Annette; Andreesen, Jan R. (1999). "Selenium-containing xanthine dehydrogenase from Eubacterium barkeri". Eur. J. Biochem. 264 (3): 862–71. doi:10.1046/j.1432-1327.1999.00678.x. PMID 10491134.
- ^ Andreesen, J. R.; Makdessi, K. (2008). "Tungsten, the Surprisingly Positively Acting Heavy Metal Element for Prokaryotes". Annals of the New York Academy of Sciences. 1125 (1): 215–229. Bibcode:2008NYASA1125..215A. doi:10.1196/annals.1419.003. PMID 18096847. S2CID 19459237.
- ^ Petkewich, Rachel A. (19 January 2009). "Unease over Tungsten". Chemical & Engineering News. 87 (3): 63–65. doi:10.1021/cen-v087n003.p063.
- ^ Inouye, L. S.; et al. (2006). "Tungsten effects on survival, growth, and reproduction in the earthworm, eisenia fetida". Environmental Toxicology and Chemistry. 25 (3): 763–8. Bibcode:2006EnvTC..25..763I. doi:10.1897/04-578R.1. PMID 16566161. S2CID 38620368.
- ^ McQuaid A; Lamand M; Mason J (1994). "Thiotungstate-copper interactions II. The effects of tetrathiotungstate on systemic copper metabolism in normal and copper-treated rats". J Inorg Biochem. 53 (3): 205–18. doi:10.1016/0162-0134(94)80005-7. PMID 8133256.
- ^ Paul Blum, ed. (1 April 2008). Archaea: New Models for Prokaryotic Biology. Caister Academic Press. ISBN 978-1-904455-27-1.
- ^ Brown, Mark (7 September 2011). "The Earth's most precious metals arrived on meteorites". wired.co.uk.
- ^ Strigul, N; Koutsospyros, A; Arienti, P; Christodoulatos, C; Dermatas, D; Braida, W (2005). "Effects of tungsten on environmental systems". Chemosphere. 61 (2): 248–58. Bibcode:2005Chmsp..61..248S. doi:10.1016/j.chemosphere.2005.01.083. PMID 16168748.
- ^ Krebs, Robert E. (2006-07-30). The History and Use of Our Earth's Chemical Elements: A Reference Guide (in الإنجليزية). Bloomsbury Publishing USA. ISBN 978-0-313-02798-7.
- ^ Laulicht, F.; Brocato, J.; Cartularo, L.; Vaughan, J.; Wu, F.; Vaughan, J.; Kluz, T.; Sun, H.; Oksuz, B. A.; Shen, S.; Peana, M.; Medici, S.; Zoroddu, M. A.; Costa, M. (2015). "Tungsten-induced carcinogenesis in human bronchial epithelial cells". Toxicology and Applied Pharmacology. 288 (1): 33–39. Bibcode:2015ToxAP.288...33L. doi:10.1016/j.taap.2015.07.003. PMC 4579035. PMID 26164860.
- ^ Zoroddu, M. A.; Medici, S.; Peana, M.; Nurchi, V. M.; Lachowicz, J. I.; Laulicht, J.; Costa, M. (2017). "Tungsten or Wolfram: Friend or Foe?". Curr. Med. Chem. 24 (1): 65–90. doi:10.2174/0929867324666170428105603. PMID 27855621.
- ^ Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. (2006). "A review of tungsten: From environmental obscurity to scrutiny". Journal of Hazardous Materials. 136 (1): 1–19. Bibcode:2006JHzM..136....1K. doi:10.1016/j.jhazmat.2005.11.007. PMID 16343746.
- ^ Lagarde, F.; Leroy, M. (2002). Metabolism and toxicity of tungsten in humans and animals. Metal Ions in Biological Systems. Vol. 39. pp. 741–59. doi:10.1201/9780203909331.ch22 (inactive 12 July 2025). ISBN 978-0-8247-0765-1. PMID 11913143.
{{cite book}}
: CS1 maint: DOI inactive as of يوليو 2025 (link) also reported in Astrid Sigel; Helmut Sigel (2002). Molybdenum and tungsten: their roles in biological processes. CRC Press. p. 741 ff. ISBN 978-0-8247-0765-1. - ^ Masten, Scott (2003). "Tungsten and Selected Tungsten Compounds – Review of Toxicological Literature" (PDF). National Institute of Environmental Health Sciences. Archived from the original (PDF) on 2009-03-25. Retrieved 2009-03-19.
- ^ Marquet, P.; et al. (1997). "Tungsten determination in biological fluids, hair and nails by plasma emission spectrometry in a case of severe acute intoxication in man". Journal of Forensic Sciences. 42 (3): 527–30. doi:10.1520/JFS14162J. PMID 9144946.
- ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Tungsten". www.cdc.gov. Archived from the original on 2015-11-25. Retrieved 2015-11-24.
- ^ المعادن الثقيلة.. سموم بيئية، فيدو
وصلات خارجية

- CS1 الإنجليزية البريطانية-language sources (en-gb)
- CS1 maint: DOI inactive as of يوليو 2025
- Infobox element missing image
- Articles with hatnote templates targeting a nonexistent page
- Articles with unsourced statements from December 2022
- صهر المعادن
- علم الأحياء وعلم الصيدلة من العناصر الكيميائية
- علوم وتكنولوجيا في اسبانيا
- عناصر كيميائية
- فلزات انتقالية
- مواد حرارية
- تنگستن